Penulisan buku ini didasari oleh kebutuhan referensi aplikasi statistika dengan menggunakan SPSS yang diharapkan mampu untuk menunjang berbagai studi dan penelitian. Selain itu juga disertai dengan konsep-konsep Statistika sehingga memudahkan dalam memahami aplikasi yang dilakukan. Dalam buku ini dibahas tentang:

- Bab I. Pendahuluan, Menjelaskan definisi statistika dan tugas statistika, macam ma cam data statistika, perkembangan awal SPSS, softwere SPSS
- Bab II Penyajian data, diagram batang tunggal, batang ganda, komponen, lingkaran dan garis
- Bab III Statistik Deskriptif, mean, modus dan median, kuartil, desil dan persentil, jangkauan, varian dan simpangan baku, ukuran keruncingan dan kemiringan
- Bab IV Pemeriksaan Data, meliputi uji normalitas data, homogenitas data dan pencilan.
- Bab V Uji perbedaan Rata-rata, meliputi: uji t satu sampel, uji t dua sampel bebas dan uji t dua sampel berpasangan
- Bab VI Anova, meliputi: analisis varian satu arah dan analisis varian dua arah.
- Bab VII Korelasi, meliputi: pengertian korelasi, macam-macam korelasi, korelasi product moment dan korelasi Spearmank Rank
- Bab VIII Regresi Linier, meliputi: pengertian Regresi, model regresi, uji parameter regresi, nilai koefisien determinasi dan uji asumsi regresi dengan SPSS.
- Bab IX: Uji Validitas dan Reliabilitas Instrumen.

PENGOLAHAN DATA DENGAN

E

Dr. Abd. Rozak, S.Pd., M.Si. Dr. Wiwin Sri Hidayati, M.Pd.

PENGOLAHAA

APLIN

ET ATTENED BY STATE

DENGAN

PENGOLAHAN DATA DENGAN SPSS

Dr. Abd. Rozak, S.Pd., M.Si. Dr. Wiwin Sri Hidayati, M.Pd.

Penulis: Dr. Abd. Rozak, S.Pd, M.Si. Dr. Wiwin Sri Hidayati, M.Pd.

ISBN 978-602-5715-15-0

Editor: Dr. Erni Munastiri, M.M. Ashlihah, M.M.

Penyunting: Wening Puspowati

Desain Sampul dan Tata Letak Erhaka Art

Penerbit:

Erhaka Utama

Redaksi:

Pogung Baru Blok F28 Sleman-Yogyakarta 0814-5606-0279 | www.erhakautama.com

Distributor Tunggal:

CV. Bumi Maheswari | Pratama Residence Kav C23/B19 Plosogeneng-Jombang | 0857-4666-6795 | IG@erhakautama |@bookterrace |@broden_taraka | Fb erhaka utama Yogyakarta

Cetakan Pertama April 2019

Hak cipta dilindungi undang-undang. Dilarang memperbanyak isi buku ini, baik sebagian maupun seluruhnya dalam bentuk apapun tanpa izin tertulis dari Penerbit

PENGANTAR PENULIS

Puji syukur kami panjatkan kehadirat Tuhan YME, berkat rahmat dan hidayah-Nya sehingga penulis dapat menyelesaikan penulisan buku dengan l Pengolahan Data dengan SPSS ini, Penulisan buku ini didasari oleh kebutuhan referensi aplikasi statistika dengan menggunakan SPSS yang secara luas banyak digunakan oleh berbagai pihak, baik dalam bidang sosial maupun eksakta dan diharapkan mampu menunjang berbagai studi dan penelitian dalam hal analisis data statistika.

Tidak dipungkiri bahwa penggunaan SPSS sangat menunjang dalam analisis data, hal ini memungkinkan para pengguna SPSS dapat dengan mudah menganalisis data yang diperoleh tanpa harus menggunakan perhitungan rumus-rumus yang dirasa menyulitkan. Penggunaan teknologi informasi yang semakin luas di setiap kalangan harus dioptimalkan guna mempermudah setiap pekerjaan yang ada, demikian pula pada penggunaan *softwere* dalam statistika. *Softwere* SPSS dipilih karena memiliki beberapa kemudahan dan sudah cukup populer di masyarakat sebagai salah satu sarana dalam analisis data.

Penulisan buku ini tidak terlepas dari adanya bantuan dan dorongan dari berbagai pihak, karena itu kami ucapkan terima kasih yang sebesar-besarnya atas seluruh dukungan yang diberikan. Kami menyadari bahwa dalam penulisan buku ini kurang sempurna, oleh karena itu kami menunggu saran dan kritik yang membangun bagi penyempurnaan buku ini.

> Jombang, Maret 2019 Penulis

Daftar Isi

Kat	a Pengantar	iii
Daf	ftar Isi	iv
Bal	o I Pendahuluan	1
A.	Statistika dan Tugas Statistika	1
B.	Macam-Macam Data Statistika	4
C.	Tentang SPSS	6
D.	Memulai SPSS	7
E.	Input Data dalam SPSS	9
Bal	o II Penyajian Data	16
A.	Diagram Batang	18
B.	Diagram Lingkaran	24
C.	Diagram Garis	26
D.	Mengedit Sajian Data	29
Bal	o III Statistik Deskriptif	33
A.	Mean	33
B.	Modus	34
C.	Median	34
D.	Kuartil, Desil, Persentil	35
E.	Jangkauan Varian dan Simpangan Baku	38
F.	Ukuran Kemiringan dan Ukuran Keruncingan	40
G.	Aplikasi dengan SPSS	45
Bal	o IV Pemeriksaan Data	48
A.	Pemeriksaan Normalitas Data	48
B.	Pemeriksaan Homogenitas data	55
C.	Pengecekan Pencilan	60
D.	Pemeriksaan Missing Data	62
Bal	o V Uji Perbedaan Rata-rata	65
A.	Uji Perbedaan Rata-Rata Satu Sampel	66
B.	Uji Perbedaan Rata-Rata Dua Sampel Bebas	69
C.	Uji Perbedaan Rata-Rata Dua Sampel Berpasangan	75

Bab	VI Analisis Varians	83
A.	Analisis Varian Satu Arah	
B.	Analisis Varian Dua Arah	91
Bab	VII Korelasi	105
A.	Pengertian Korelasi	
B.	Macam-Macam Korelasi	
Bab	VIII Regresi Linier Sederhana	117
A.	Pengertian Regresi	
B.	Model Regresi dengan SPSS	
C.	Pengujian Parameter Regresi	
D.	Kriteria Pemilihan Model Terbaik	
E.	Metode Pemilihan Model Terbaik	
F.	Contoh Permasalahan	
G.	Uji Asumsi Regresi	
Bab) IX Uji Validitas dan Reliabilitas Data	141
A.	Validitas	
B.	Reliabilitas	
Daf	tar Pustaka	151
Bio	data Penulis	156

BAB I PENDAHULUAN

(rocket.doct.com)

Penggunaan *softwere* statistika sangat menunjang aktivitas penelitian terutama dalam analisis data. *Softwere* statistika yang ada di sekitar kita, misalnya minitab, SAS, Amos, liserel, dan lainlain. SPSS menjadi *softwere* statistika yang paling banyak digunakan, tidak hanya terjadi pada ilmu-ilmu sosial, namun juga pada bidang ilmu eksak.

-		/	
/			
IBM*	SPSS	Stati	stics
Version	120		Y-04136

(www.phil-fak.uni-duesseldorf)

Pada bab I akan uraikan hal-hal yang berhubungan dengan statitika, data, dan pengenalan awal SPSS, karena itu setelah mempelajarinya diharapkan pembaca dapat:

- 1. Menjelaskan definisi statistika dan tugas statistika
- 2. Menjelaskan macam-macam data statistika
- 3. Menjelaskan perkembangan awal SPSS
- 4. Memulai softwere SPSS
- 5. Memahami data View dan bagian-bagian dari variabel View
- 6. Memahami beberapa menu dalam SPSS
- 7. Menyimpan data dalam format SPSS.

A. Statistika dan Tugas Statistika

Istilah statistika berasal dari bahasa latin statisticum collegium yang berarti dewan negara, sedangkan dari bahasa Italia statista yang berarti negarawan atau politikus. Sedangkan Gottfried Achenwall tahun 1749 menggunakan istilah Statistik dalam

Pengolahan Data dengan SPSS $\mid 1$

bahasa Jerman untuk pertama kalinya sebagai *Name* bagi kegiatan analisis data kenegaraan, dengan mengartikannya sebagai ilmu tentang negara (*state*).

Pada awal abad ke-19 telah terjadi pergeseran arti *Statistik* menjadi ilmu mengenai pengumpulan dan klasifikasi data. Pada awal abad ke-20 statistika mulai banyak menggunakan bidangbidang dalam matematika, terutama probabilitas. Penggunaan statistika pada masa sekarang dapat dikatakan telah menyentuh semua bidang ilmu pengetahuan, mulai dari astronomi hingga linguistika. Bidang-bidang ekonomi, biologi dan cabang-cabang terapannya, serta psikologi banyak dipengaruhi oleh statistika dalam metodologinya. Sehingga lahirlah ilmu-ilmu gabungan seperti ekonometrika, biometrika (atau biostatistika), dan psiko-metrika.

Lebih khusus lagi definisi statistika, dalam sebuah pengamatan atau penelitian di dalam laporannya sering diperlukan suatu uraian, penjelasan atau kesimpulan tentang persoalan yang diamati atau diteliti. Sebelum membuat kesimpulan, keterangan atau data yang terkumpul terlebih dahulu dipelajari, diolah atau dianalisis, dan berdasarkan pengolahan data inilah baru dibuat kesimpulan. Mulai dari pengumpulan data, pengolahan data dan pengambilan kesimpulan haruslah mengikuti cara-cara yang benar dan dapat dipertanggungjawabkan. Ini semua merupakan pengetahuan tersendiri yang dinamakan dengan *statistika*. Jadi statistika adalah pengetahuan yang berhubungan dengan cara-cara pengumpulan data, pengolahan atau penganalisisannya dan penarikan kesimpulan berdasarkan kumpulan data dan penganalisaan yang dilakukan.

Dari definisi di atas, dapat diperoleh bahwa tugas statistik diporoleh :

1. Statistika Deskriptif

Adalah statistik yang mempunyai tugas pengumpulan data, pengolahan data penganalisaan dan penyajian data yang baik

2. Statistika Induktif (inferensial)

Adalah statistik yang mempunyai tugas mengambil kesimpulan dan membuat keputusan yang beralasan berdasarkan pada penganalisaan yang dilakukan (Sudjana,1989). Pada statistika induktif dibagi menjadi dua macam berdasarkan syarat dan data tertentu.

a. Statistika Parametrik

Statistik yang mempunyai tugas menganalisis data yang berbentuk interval dan rasio dengan syarat data tersebut harus berdistribusi normal. Berikut pedoman pemilihan uji statistik parametrik:

Data		Bentuk Hipotesis				
	Deskriptif	Komparatif	fdua	Komparatif	^r k	Aso-
	satu	sampel		sampel		siatif
	sampel	Berpasa-	Bebas	Berpasa-	bebas	
		ngan		ngan		
Inter- val/ra- sio	Uji t satu sampel Uji Z	Uji t sampel berpa- sangan	Uji t sam- pel bebas	Anova	Anova	Pro- duct Mo- ment

Tabel 1.1 Uji Statistik Parametrik

b. Statistika Nonparametrik

Statistik yang mempunyai tugas menganalisis data yang berbentuk nominal dan ordinal dengan tidak ada syarat data tersebut harus berdistribusi normal. Berikut pedoman pemilihan uji statistik nonparametrik:

Tabel 1.2 Uji S	Statistik	Nonparametrik
-----------------	-----------	---------------

Ma-	Bentuk Hipotesis					
cam	Deskriptif	Komparatif Dua Sa	ampel	Komparatif	K Sampel	Asosia
data	Satu Sampel	Berpasangan	Bebas	Berpasangan	bebas	tif
Nomin al	 Uji Binomial Uji Chi Kuadrat 	Uji Mc Nemar	 Uji Exact Fisher Uji Chi Kuadrat 	Uji Q Cochran	Uji Chi Kuadrat	Pears on's C
Ordi- nal	 Uji runtun Uji kolmo- gorov smirnov 	 Uji Tanda Uji Wilcoxon 	 Uji Mann Whitney Uji Medi- an 	Uji Friedman	 Uji Median Uji Kruskal Wallis 	Spear man's rho

B. Macam-Macam Data Statistika

Data adalah sumber informasi yang diketahui atau dicari atau diasumsikan untuk memberikan gambaran mengenai suatu persoalan atau keadaan.

Jenis Pembagian Data

- 1. Berdasarkan Sifat
- a. Data kualitatif adalah data yang berbentuk kategori, contoh data kualitatif adalah: baik, buruk, berhasil, gagal, senang, rusak, puas, dan sebagainya.

Pada data kualitatif digolongkan menjadi data nominal dan ordinal.

Data nominal adalah data kualitatif yang dikategorikan berdasarkan jenis dan memiliki pola tingkatan sejajar , misalnya jenis kelamin ada laki-laki dan perempuan, jenis pekerjaan ada tani, buruh, pegawai dan lain-lain,

Sedangkan data ordinal adalah data kualitatif yang dikategorikan berdasarkan jenis yang memiliki pola tingkatan atau strata, misalnya tingkat pendidikan, SD, SMP, SMA dan perguruan tinggi.

b. Data kuantitatif adalah data yang berbentuk bilangan, pada data kuantitatif dilihat dari nilainya dikenal diskrit dan data kontinu.

Data diskrit adalah data yang didapatkan dengan cara menghitung atau membilang, sedangkan data kontinu didapatkan dengan cara mengukur. Contoh data diskrit adalah sebagai berikut:

- 1. Di Kecamatan X terdapat 5 SMP Negeri dan 1 SMA Negeri.
- 2. Sebuah keluarga mempunyai anak 3 laki-laki dan 2 perempuan.
- 3. Di kelas I-A SMK P terdapat 25 siswa laki-laki dan 15 siswa perempuan.

Sedangkan contoh data kontinu adalah sebagai berikut:

a. Tinggi badan 5 orang siswa adalah: 160 cm, 163 cm, 159 cm, 170 cm, dan 167 cm.

b. Berat badan 3 orang siswa adalah: 45 kg, 50 kg, dan 53 kg. Selanjutnya untuk data kontinu, diklasifikasikan menjadi :

- 1. Data Ratio, adalah data yang dalam kuantifikasinya memiliki nol mutlak, artinya titik nol yang digunakan sebagi acuan bersifat mutlak, contoh pengukuran berat, panjang dan luas.
- 2. Data Interval, adalah data yang dalam kuantifikasinya tidak memiliki nol mutlak, artinya titik nol yang digunakan sebagi acuan tidak bersifat mutlak tetapi bersifat relatif, Misalnya dalam perhitungan suhu dalam derajat celcius, fahrenheit, kelvin dan reanmurt masing-masing tidak memiliki acuan yang sama (nol Mutlak) artinya jika suhu 0 derajat celcius tidak berarti sama dengan 0 derajat kelvin.
- 3. Bedasarkan Sumber
 - a. Data intern adalah data yang didapatkan dari dalam suatu lembaga peneliti,
 - b. Data ekstern adalah data yang didapatkan dari luar lembaga peneliti.

Jika STKIP PGRI Jombang mencatat segala kegiatan, misal: keadaan mahasiswa, keadaan dosen, keadaan laboratorium, uang

masuk, uang keluar, dan lain-lain, maka data tersebut merupakan data intern dari STKIP PGRI Jombang tersebut.

- 4. Berdasarkan Cara Memperoleh
 - a. Data Primer adalah data yang diperoleh langsung dari sumber data.
 - b. Data skunder adalah data yang diperoleh dari lembaga lain yang sudah memperoleh/mengolah data tersebut.
- 5. Berdasarkan Waktu
 - a. *Cross section* adalah data data yang dikumpulkan secara serentak dalam kurun waktu yang bersamaan dan menggambarkan keadaan pada periode tersebut.
 - b. *Time series* adalah data yang dikumpulkan berdasarkan series waktu.

C. Tentang SPSS

SPSS (Statistical Package for the Social Sciens) merupakan salah satu perangkat lunak khusus untuk pengolahan data statistika yang paling banyak pemakaiannya. SPSS banyak digunakan dalam berbagai riset pemasaran, pengendalian dan perbaikan mutu (quality improvement), serta riset-riset sains. SPSS pertama kali muncul dengan versi PC (bisa dipakai untuk komputer desktop) dengan Name SPSS/PC+ (versi DOS). Tetapi, dengan mulai populernya system operasi windows. SPSS mulai mengeluarkan versi windows (mulai dari versi 6.0 sampai versi 20).

Pada awalnya SPSS dibuat untuk keperluan pengolahan data statistik untuk ilmu-ilmu social, sehingga kepanjangan SPSS itu sendiri adalah *Statistical Package for the Social Sciens*. Sekarang kemampuan SPSS diperluas untuk melayani berbagai jenis pengguna (*user*), seperti untuk proses produksi di pabrik, riset ilmu sains dan lainnya. Dengan demikian, sekarang kepanjangan dari SPSS adalah *Statistical Product and Service Solutions*.

D. Memulai SPSS

Sebelum masuk program SPSS, pastikan dalam PC anda sudah terinstal *software* SPSS sesuai dengan versi yang ada.

Langkah langkah memulai SPSS adalah sebgai berikut :

Klik start \longrightarrow all programs \longrightarrow SPSS for windows \longrightarrow SPSS 20 for Windows.

Untuk Variabel View

Street Steel	do marine	10000	PARTY OF	THE OWNER	State of Lot of		-	
Ter Sale See	Am Jan	men hunar	Jan 199	T. FWE	10000 3001	TAL DOUBLE !!	-	
-Co-HE-D	1.112	and and	10.3.1	61.04	100 100	100 100.5	10.000	a the min
	1000	R	19. AN A	10.00	1.000	1120 104 1	12.184.11	a state of the
and the second second	Mark 1	190.00	MR TORNES	NT	and the second	and of the local	all in the same	
and the second second								
11 Mar 1								
11.4 11.5								
1.00								
11000								
and the second								
10000								
1.00								
-								
1.00								
100								
1.000.000								
1.0								
11 March 1								
Contraction of the second							_	
10	interest in the	_	_					
Statement in succession	- 100							

Gambar 1.1 Variable View Pada Data Editor

Variable View digunakan untuk menentukan *Variable* data yang akan dianalisis, bagaian dari *Variable View* adalah :

- 1. Name: digunakan untuk memberi Name Variable,
- 2. *Type*: digunakan untuk menentukan tipe data yang dimasukan, terdapat bermacam-macam pilihan, yaitu:

Numeric		
©omma	Width:	8
∋ <u>D</u> ot	Decimal Places	2
Scientific notation	Decimar _ loces.	2
Date		
) Doļlar		
Custom currency		
) String		
Restricted Numeric (integer with leading	zeros)	
The Numeric type honors the digit gro Numeric never uses digit grouping.	uping setting, while the R	estricted

Gambar 1.2 *Variable Type* Pada Data Editor

Klik ok jika tipe data sudah terpilih.

Pengolahan Data dengan SPSS $\mid 7$

- 3. *width*: digunakan untuk mengatur lebar kolom.
- 4. *Decimal Place*: digunakan untuk menentukan tempat desimal, kecuali tipe data *String*
- 5. *Label*: digunakan untuk memberi keterangan dari *Name* variabel
- 6. *values*: digunakan untuk pengkodean data.
- 7. Missing: digunakan untuk keterangan data yang dihilangkan
- 8. column: digunakan untuk mengatur dan menentukan lebar data.
- 9. *Align*: digunakan untuk posisi data, terdapat pilihan *center*, *left* dan *Right*.
- 10. *measure*: digunakan untuk menentukan jenis data, terdapat *scale*, nominal dan ordinal.

Untuk data *View* digunakan untuk input data apabila *Variable* data sudah dibuat sebelumnya.

Tampilan dalam data View seperti di bawah ini.

Grant 14-12 20 10-1	A SHIP	and the second se	ALC: UNKNOWN OF	
Pi 30 VH 20 348	the state of the s	Start Miles Amon	10.00 Mt.	
	20月1日日	- 四十二十二十二十二十二十二十二十二十二十二十二十二十二十二十二十二十二十二十二	長月(月)	0.500 E
				197
Contraction of the second s		-		
ters Series				
1.4.1				-
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1				
100 100				
1262				
and from				
2.00				
-				-
105.0				
Contract of the second s				
1082				
T PCI I				
Contraction of the second seco				1.1.1
Concerning of the local division of the loca				
the second se		and the second	ALC: NOT THE OWNER OF	
			and a second second second	

Gambar 1.3 Data View Pada Data Editor

E. Input Data dalam SPSS

KARYAWAN	PENDIDIKAN	TAHUN MASUK	USIA	Status	GAJI (RIBU)	Asu- ransi
А	SMA	1993	24	Belum Menikah	500	Ya
В	DIPLOMA	1993	35	Menikah	700	Ya
С	SMA	1994	25	Belum Menikah	550	Ya
D	SARJANA	1992	33	Menikah	820	Ya
E	DIPLOMA	1993	35	Menikah	650	Ya
F	SARJANA	1992	33	Menikah	990	Ya
G	SMA	1994	25	Belum Menikah	475	Ya
Н	DIPLOMA	1994	25	Belum Menikah	650	Ya
I	SARJANA	1993	30	Menikah	820	Ya
J	SARJANA	1994	27	Menikah	815	Ya
K	DIPLOMA	1993	27	Menikah	725	Ya
L	DIPLOMA	1993	31	Menikah	770	Ya
М	SMA	1993	30	Menikah	650	Ya
N	SMA	1992	33	Menikah	450	Tidak
0	SARJANA	1994	33	Belum Menikah	800	Tidak
Р	SMA	1993	22	Belum Menikah	700	Tidak
Q	DIPLOMA	1995	24	Belum Menikah	750	Tidak
R	SMA	1995	23	Menikah	680	Tidak
S	DIPLOMA	1994	26	Belum Menikah	815	Tidak
Т	SARJANA	1993	25	Menikah	718	Ya

Pada tabel di atas terdiri dari enam variabel, berarti kita akan mendefinisikan keenam variabel tersebut.

Variabel 1 Name : Karyawan *Type* : *String*, *Label* : kode karyawan, *align* : *left measure* : nominal, Adapun variabel lain sesuai *default* program

Pengolahan Data dengan SPSS $\mid 9$

	- (1	ŀ	la.
10	~	16	II .,	0
	22		/	1
	1	2		

Variabel 2					
Name	: Didik				
Туре	: numeric, decimal : 0, width : 8,				
Label	: pendidikan terakhir,				
align	: left				
Values	: 1=SMA, 2:DIPLOMA, 3=SARJANA				
measure	: scale,				
Adapun variabel lain sesuai <i>default</i> program					

Variabel 3

Name	: Masuk
Туре	: numeric, decimal : 0, width : 8,
Label	: tahun Masuk Karyawan,
align	: Right
measure	: scale,
Adapun vari	abel lain sesuai <i>default</i> program

Variabel 4

Name	: Usia
Туре	: numeric, decimal : 0, width : 8,
Label	: Usia karyawan,
align	: Right
measure	: scale,
Adapun var	riabel lain sesuai <i>default</i> program

Variabel 5

Name	: Status
Туре	: numeric, decimal : 0, width : 8,
Label	: status,
Values	: 1 : Belum menikah, 2:Menikah
align	: Right
measure	: scale,
Adapun vari	abel lain sesuai <i>default</i> program

8,
n

Variabel 7	
Name	: Asuransi
Туре	: numeric, decimal : 0, width : 8,
Label	: Asuransi,
Values	: 1 :Ya, 2 : Tidak
align	: Right
measure	: scale,
Adapun vari	abel lain sesuai <i>default</i> program

18	14日間	Q Ato	- H	為 目	日林周	(2) 篇	和西		0.0	15
	Same .	1.00	0.0044	1 Deenald	i lake	- Trius	Maarty	Information	24.	Hannet
<u>t</u>)	Garyanan	Ship		3	Hole-Garyania.	344	None-		·夏144:	Albeim
2.	564	riscos.	3.	1	Reddkin Ter	21.9640	1006	8	· Buit	244
¥	Metall	Marris:	81	3	Titos masa K.	604	1006	ł	通 Red	1.500
1	144	Turnet	3. I	×	Dis Keyhial	344	Allow	a	·夏 Right	- Zina
0	2.8.4	Barren	30.1	4	rissa .	7,66atill.	3996	(B)	覆的m	1.000
£ -	Gal	Yarma.	÷	4	24	See.	10.0		演印段	1.818
1.	tavata.	tionis'		4	44244	0.04	Abox.	8	連接に	J SLAN
1										
÷										
ñ										
11										
3.0										
tt:										
11.				_		-			_	
-	1 million and		_	_	-			_		ai

Gambar 1.4 Variable View

	Areas	at 1 1944	Mark	Sec. 1	Bea	1 Date 2	Janya"
12	A	11	190	38	- C	100	1.1
63	11.1	- T	1001	- 36	1	100	1.1
ĸ.	C	0.8	794	- 26		115	1.11
4.17	14	- 1	1994	- 22	- A.	410	1.0
5.5	E	- X	1202	- 25	T.	631	
10	1 P	101	190	- 70	187	100	
t.,	18.	33	1984	- 22	- C.	110	1.0
10		- A	2014	0.00	+	426	1.1
10	() · · · ·	- X	100	20	10	- 101	
W	1	19 4	584	-π.	×.	119	12
£.,		10	1963	11	1	116	1
<u>.</u>	150	(J)	1968	- 38	-X.,	179	2 QI
¥.:	2M	0.0	100	- 30	- T.	446	
1	14.	1	1963	- 15		100	
×.,	e		1204	.22			
83	12.	33	1903	- 22	- 30	156	1.12
Y.:.	4	13	705	-10		786	- 1
٩.,	(k	12	1985	- 12	7.	- 440	14
κ.	1111	1.1	1964	- 20	35	- 01	P
8	1.1	- dt	190	-25		- 114	
Ε.							
1.	÷						
80							

Gambar 1.5 Data View

Selanjutnya klik *View Labels* pada *toolbar View* untuk memunculkan Nama variabel yang dikode.

Gambar 6.1 toolbar View

	1	đ.		
à.,	12	L	in	-
	1		100	1
6	1	5	2	13
	1	~	1	N.V.

*Karya	awan.sav [DataSet1]	- IBM SPSS Stat	tistics Data Editor			1	1200	
<u>F</u> ile <u>E</u>	dit <u>V</u> iew <u>D</u> ata	Transform	Analyze Direct N	larketing <u>G</u>	raphs <u>U</u> tilities Ad	d- <u>o</u> ns <u>W</u> ind	low <u>H</u> elp	
8	HAI				#			[]
21 : Asur	ransi	1						
	Karyawan	Didik	Masuk	Usia	Status	Gaji	Asuransi	
1	A	SMA	1993	24	Belum Menikah	500	ya	
2	В	DIPLOMA	1993	35	Menikah	700	ya	
3	C	SMA	1994	25	Belum Menikah	550	уа	
4	D	SARJANA	1992	33	Menikah	820	ya	
5	E	DIPLOMA	1993	35	Menikah	650	ya	
6	F	SARJANA	1992	33	Menikah	990	ya	
7	G	SMA	1994	25	Belum Menikah	475	ya	
8	н	DIPLOMA	1994	25	Belum Menikah	650	ya	
9	1	SARJANA	1993	30	Menikah	820	ya	
10	J	SARJANA	1994	27	Menikah	815	ya	
11	ĸ	DIPLOMA	1993	27	Menikah	725	ya	
12	L	DIPLOMA	1993	31	Menikah	770	ya	
13	M	SMA	1993	30	Menikah	650	ya	
14	N	SMA	1992	33	Menikah	450	tidak	
15	0	SARJANA	1994	33	Belum Menikah	800	tidak	
16	P	SMA	1993	22	Belum Menikah	700	tidak	
17	Q	DIPLOMA	1995	24	Belum Menikah	750	tidak	
18	R	SMA	1995	23	Menikah	680	tidak	
19	S	DIPLOMA	1994	26	Belum Menikah	815	tidak	
20	T	SARJANA	1993	25	Menikah	718	ya	

Gambar 1.7 Data View

Untuk proses penyimpanan data dilakukan dengan klik: *File save as*

Gambar 1.8 menu file

Lesten Girland	I DHD I STORE CONTRACTOR CONTRACT		
File name	La BUAL (PTO) La BAC) La Merter (E) Recence of the constance Marganeer site		- Sava
Sale as hi	en (DPOD Cleanship ("	12	Easte
	 With conversion that by our external structure searce month where defined balance of data ensure and any externation where exactly 		Canon Help
	Chore Gen To Reporting		

Gambar 1.9 Kotak Dialog Save As

Klik save jika data letak data sudah sesuai pada folder yang dituju. Hal ini juga berlaku untuk *output* data.

Penyimpanan file SPSS berupa dua ekstensi, yaitu .sav untuk data editor dan .spv untuk data output.

Latihan

Data di bawah ini menunjukkan waktu olah raga perminggu dan waktu online dalam jam dari berbagai pekerjaan.

Nama	Kategori Lama Online Perhari	Pekerjaan	Nama	Pekerjaan	Kategori Lama Online Perhari
RUSDA	Sebentar	PNS	CONNY	BUMN	Lama
NINA	Sedang	Wirswasta	MARY	PNS	Sebentar
LANNY	Lama	PNS	SUSY	Wirswasta	Lama
CITRA	Sedang	PNS	USMAN	PNS	Sebentar
DINA	Lama	Wirswasta	SALIM	Wirswasta	Sedang
SISKA	Lama	BUMN	JAMES	PNS	Lama
LUSI	Lama	PNS	JONI	PNS	Sedang
LENNY	Sedang	BUMN	JONO	BUMN	Lama
RUDI	Sedang	BUMN	KRISTAN TO	Wirswasta	Sebentar
ROBY	Lama	PNS	KARIM	Wirswasta	Sedang
BAMBA NG	Lama	Wirswasta	MELANI	Wirswasta	Lama
YUNUS	Sebentar	PNS	RUSMIN	BUMN	Sebentar
LESTAR I	Lama	PNS	SULASTRI	Wirswasta	Sedang
ERNI	Sebentar	BUMN	LILIANA	Wirswasta	Lama
ESTI	Sebentar	Wirswasta	PRIHAR	BUMN	Sedang
HANY	Lama	PNS			
HESTY	Sebentar	Wirswasta			
SUSAN	Lama	Wirswasta			
LILIS	Sedang	BUMN			
LITA	Sedang	PNS			

Input data di atas dalam data SPSS, jangan lupa simpan dalam folder yang diinginkan.

BAB II PENYAJIAN DATA

Data dari hasil survei berupa data mentah akan sulit dipahami jika tidak disajikan dalam bentuk sajian yang sesuai, selain itu dengan tampilan yang seadanya tentu akan mengurangi minat pembaca untuk mendapatkan informasi dari data tersebut. Dengan dasar itu maka

(www.shutterstock.com)

data atau informasi perlu disajikan dalam sajian yang menarik dan mudah dipahami.

Pada bab ini akan dikaji tentang beberapa penyajian data, karena itu setelah mempelajarinya diharapkan pembaca dapat:

- 1. Menyajikan data dalam diagram batang tunggal dengan SPSS
- 2. Menyajikan data dalam diagram batang ganda dengan SPSS
- Menyajikan data dalam diagram batang komponen dengan SPSS
- 4. Menyajikan data dalam diagram lingkaran dengan SPSS
- 5. Menyajikan data dalam diagram garis dengan SPSS
- 6. Mengedit sajian data

Sebagai contoh, sebuah perusahaan rumah tangga (*home industry*) mendata karyawan yang bekerja, diperoleh data dalam tabel di bawah ini.

Tabel 2.1 Data Karyawan

KAR- YAWAN	PENDIDIKAN	TAHUN MASUK	USIA	GAJI AWAL (RIBU)	gaji Akhir (ribu)
А	SMA	1993	24	500	560
В	DIPLOMA	1993	35	700	770
С	SMA	1994	25	550	745
D	SARJANA	1992	33	820	850
E	DIPLOMA	1993	35	650	650
F	SARJANA	1992	33	990	990
G	SMA	1994	25	475	540
Н	DIPLOMA	1994	25	650	750
I	SARJANA	1993	30	820	850
J	SARJANA	1994	27	815	820
К	DIPLOMA	1993	27	725	740
L	DIPLOMA	1993	31	770	790
М	SMA	1993	30	650	700
Ν	SMA	1992	33	450	500
0	SARJANA	1994	33	800	825
Р	SMA	1993	22	700	725
Q	DIPLOMA	1995	24	750	724
R	SMA	1995	23	680	723
S	DIPLOMA	1994	26	815	892
Т	SARJANA	1993	25	718	892

Data di atas akan disajikan dalam diagram batang, diagram dan lingkaran. Sebagai langkah awal, buka SPSS dan buat variabel data seperti di bawah ini.

⊇ Karyawan.s Eile ⊑dit	av [DataSet1] - I ⊻iew <u>D</u> ata	BM SPSS Statistic Transform An	s Data Edito alyze Dire	r. ct <u>M</u> arketing	Graphs Utilities	Add-ons W	indow <u>H</u> elp	100.00	200 3 0000	- 0
				1 =			42 []]]		A96	
	Name	Туре	Width	Decimals	Label	Values	Missing	Columns	Align	Measur
1	Karyawan	String	8	0	kode Karyawan	None	None	8	i≣≣ Left	🙈 Nominal
2	Didik	Numeric	8	0	Pendidikan Terak	{1. SMA}	None	8	■ Left	Scale Scale
3	Masuk	Numeric	8	0	Tahun Masuk Kar	None	None	8	3 Right	I Scale
4	Usia	Numeric	8	0	Usia Karyawan	None	None	8	🚟 Right	Scale Scale
5	Gaji_awal	Numeric	8	0	Gaji Awal	None	None	8	邇 Right	IP Scale
6	Gaji_akhir	Numeric	8	0	Gaji Akhir (Saat ini) None	None	8	🚟 Right	I Scale
Value Lab	els									
Value Lab	els									
Value:		1		Sp	elling					
Label:		-			1					
Ad hau Rem	1 = "SMA" 2 = "DIPL 3 = "SARJ	oma" Iana"								
		OK Cancel	Help							

Gambar 2.1 Variable View dan kotak dialog Value Labels

	Kemudian	masukkan	data	dalam	data	View.
--	----------	----------	------	-------	------	-------

Gunn	n av Genfall	Despis time	fan Deis Gâns-			
B# 80	r jirn Dan	-3Norhre - a	saine: Diech	peissay g	opte (galde	405-918
D.		Gimer	* 閉ま		的图	W =
1 Kayaw	w 14					
11 mar	Kanania	L C Daile	Maish	ONE J	Onj and	Gai alfui
	- A -	-04/4	1350	-24	013	\$50
1	1	OPLOMA.	1900	25	TIÖ	11
- 3	C .	5444	1304	- 25	350	141
1.4	0	SARSONA	1802	33	-600	150
17.5	E	OPLOMA.	1900	-35	-850	- 65
16		SARSONA.	1902	-33	-100	500
1	6	000	1924	- 25	:475-	540
101	H.	OPLOMA .	TEM	1-25	150	355
1.2	70t	SARDANA	TRO	- 30	- 820	850
10	1.	SAUMA	TEM	0.37	15	83
11	5162	OPLOWA	180	1-37	725	348
12	1.	OFLOMA	180	- 31	170	100
. 12	C ME	5344	1100	- 30	150	100
.u	SNI -	53/65	1102	-30	410	100
15	0	SALOA	TIEN	20	110	625
15	(#)	53,65	180	- 22	710	78
17	0	OPLONA	1106	1-24	710	224
10	R.	5344	1826	1.23	680	121
19.	12	OPLOMA.	1104	1-29	115	100
20	100	SARANA	180	- 25	110	800

Gambar 2.2 Data View

A. Diagram Batang

Langkah dalam menyusun diagaram batang dari data di atas adalah :

 $\textit{Graph} \rightarrow \textit{Legacy} \rightarrow \textit{Dialog} \rightarrow \textit{Bar}$

raphs <u>U</u> tilities	s Add- <u>o</u> ns	Window	Help
👔 <u>C</u> hart Builde	r Template Cho	oser	
Legacy Diale	oas	۲	Rar Rar
Gaji awai	Gaji aknir	var	
550	565		111 3-D Bar
750	775		Line
525	545		Area
800	850		Pie
675	680		High-Low
980	990		
475	545		En Creas Das
650	750		Engr Bar
825	850		Population Pyramid.
815	820		Scatter/Dot
725	740		Histogram

Gambar 2.3 Menu Graph

Pilih *Simple* untuk diagram batang sederhana, *Clustered* untuk diagram batang ganda dan *Stacked* untuk diagram batang komponen.Pilih *Summaries for Group of Cases*.

Bar Chi	arts	- ×
	Simple	_
	Clustered	
i.	Stacked	
-Data in	Chait Are	
@ Sum O Sum O Valu	imaties for groups of imaties of separate y es of individual case	f cases variables is
De	fine Cancel H	elp

Gambar 2.4 Kotak Dialog Bar Charts

Klik **Define** untuk mendefinisikan variabel mana yang disajikan. Nampak kotak dialog di bawah ini.

Control Description Control A control Constant System 7 Intern State States 7 Control Control Control 7 State States Control 7 State States Control 7 States States Contrel 7 States States C	In the Second Se	CONT.
Tropical Classification and the second	in or encourse or even the Dispersioned tasks (see	

Gambar 2.5 Kotak Dialog Define Sample Bar

Jika kita ingin menggambarkan variabel pendidikan terakhir karyawan, maka masukkan variabel tersebut dalam *Category Axis*. **Pilih** *N of cases* yang menggambarkan frekuensi atau banyak data pada sumbu y. Klik **ok, didapat :**

Gambar 2.5 Output Diagram Batang Tunggal

Dengan langkah yang sama didapat diagram di bawah ini jika tahun masuk karyawan dimasukkan dalam *Category Axis*.

Gambar 2.6 Output Diagram Batang Tunggal

Dari data di atas akan disajikan dalam bentuk diagram batang ganda, artinya dalam satu variabel pada sumbu horisontal akan dibagi lagi menjadi *Variable* lain sebagai penjelas.

Langkah-langkahnya adalah:

$Graph \rightarrow Legacy \rightarrow Dialog \rightarrow Bar$,

pilih *clustered*, kemudian pilih juga *Summaries for Group of Cases.* Sebagai contoh kita ingin menyajikan pendidikan terakhir karyawan dari masing-masing tahun masuk karyawan.

Masukkan Variabel Pendidikan terakhir karyawan ke *Category Axis* dan tahun masuk karyawan ke *Define Clusters by*, seperti gambar:

A restation of the second	Day Henricht	Lighter to
 I Mar Garrere (Sol) I German (Sol) (Sol) I German (Sol) (Sol) I German (Sol) (Sol) 	Bigstower Diskdower Digense Diogram Digense Diogram	Contrast.
	Construction Terrent and	
	Panel IX Rep: [46]	
	E transmission for trap same	
The sur-	State and a second second	

Gambar 2.7 Kotak Dialog Define Cluster

Klik ok, didapat *Output* di bawah ini:

Gambar 2.8 Output Diagram Batang Ganda

Selain itu dari data di atas juga akan disajikan dalam bentuk diagram batang komponen, artinya dalam satu variabel pada Pengolahan Data dengan SPSS |22|

Langkah-langkahnya adalah:

$Graph \rightarrow Legacy \rightarrow Dialog \rightarrow Bar$,

pilih *stacked*, kemudian pilih juga *Summaries for Group of Cases*. Sebagai contoh kita ingin menyajikan pendidikan terakhir karyawan dari masing-masing tahun masuk karyawan.

Masukkan *Variable* Pendidikan terakhir karyawan ke *Category axis* dan tahun masuk karyawan ke *Define Stacked by*, seperti gambar:

@ Not cases	Tingo
Carle A Charge Charge Charge Charge Charge Charge Charge Charge Charge Charge Charge Charge Charge Charge Charge Charge Charge Charge Charge Charge Charge Cha	Options.
Nest variables (ne empty rows) Odjumas: Nest variables (ne empty columns) Nest variables (ne empty columns)	
	Other gatastic (e.g., mean) Other gatastic (e.g., mea

Gambar 2.9 Kotak dialog Define Stacked

Klik ok, didapatkan Output:

Gambar 2.10 Output diagram batang komponen

B. Diagram Lingkaran

Karakter dari penyajian data dengan diagram batang sederhana (*simple*) dengan diagram lingkaran adalah sama, keduanya menyatakan banyaknya jenis obyek pada satu variabel.

Sebagai contoh dari data di atas, akan di sajikan banyaknya karyawan berdasarkan tahun masuk tertentu.

Langkah-langkahnya adalah: $Graph \rightarrow Legacy \rightarrow Dialog \rightarrow Pie$,

Gr	aphs <u>U</u> tilitie:	s Add- <u>o</u> ns	Window	Help
10 ml	Chart Builde Graphboard	er I Template Choo	oser	
	Legacy Dial	ogs	*	Bar
ġ.	Gaji_awai	Gaji_aknir	var	III an an
4	550	565		111 3-0 Bar
15	750	775		Line
5	525	545		🛃 Area
13	800	850		Pie
15	675	680		High-Low
3	980	990		Boxplot
5	475	545		Creat Dec
5	650	750		Engi Bar
0	825	850		Population Pyramid
7	815	820		Scatter/Dot
7	725	740		Histogram

Gambar 2.10 Menu Graphs

Pilih Summaries for Group of Cases. Klik Define

Pengolahan Data dengan SPSS $\mid 24$

Gambar 2.11 Kotak dialog Pie Charts

Masukkan variabel Pendidikan terakhir karyawan ke *Define Slice by*, *Pilih N of Cases*, seperti gambar:

Intel & Variantin Dec. A read State / Lower. Provide extraction to Anial State and Jobs (State State Case Anna (State State State Anna (State State State Anna (State State State State (State State State State (State State State State State)	Marine Represent B (5:4) Eases O (h of Space C (pre-streaming) C (p	(Jins.) (pent
Terrente 17 gra chat spectrolater 1997	aban	

Gambar 2.12 Kotak dialog define Pie

Klik ok, didapatkan Output:

Gambar 2.12 Output Diagram Lingkaran

C. Diagram Garis

Diagram garis digunakan untuk menyajikan data yang bersifat kontinue (terus menerus). Sifat dari diagram ini berbeda dengan diagram batang dan diagram lingkaran. Kebanyakan dari data ini adalah data deret waktu (time series).

Sebagai contoh, di bawah ini adalah data yang menunjukan kebutuhan daya listrik pada suatu kabupaten selama dua tahun.

Bulan Ke	Daya (KWH)	Bulan Ke	Daya (KWH)
1	106310	13	31780
2	66700	14	88100
3	62160	15	38490
4	75030	16	151370
5	2220	17	37750
6	53200	18	103300
7	61800	19	67950
8	61340	20	93542
9	65760	21	34850
10	56920	22	92730
11	71460	23	67110
12	127230	24	18700

Tabel 2.2 Kebutuhan Daya Listrik

Pengolahan Data dengan SPSS 26

Langkah menyusun diagram garis adalah adalah sebagai berikut:

Gambar 2.13 Menu Graph

Pilih Simple, kemudian pilih juga Values of Individual Cases.

Gambar 2.14 Kotak Dialog Line Charts

Pengolahan Data dengan SPSS $\mid 27$

Klik Define, masukkan kebutuhan listrik ke *Line Represents*, dan bulan ke pada *Category Labels*,

The Define Depte Deer Velues of Delivition Causi	10.38
Concentrates Conce	
Constant of the second	
OK CHAR BOAT CATHE HER	

Gambar 2.15 Kotak Dialog Define Simple Line

Klik ok, didapatkan Output:

Gambar 2.16 Output Diagram Garis

Pengolahan Data dengan SPSS $\mid 28$

D. Mengedit Sajian Data

Bentuk sajian data di atas adalah bentuk standard (*default*) dari SPSS, apabila penyaji ingin mengubah warna, ukuran, dan lainlain dapat dilakukan dengan langkah-langkah berikut:

1. Misalkan kita akan menyajikan data pendidikan terakhir dengan menggunakan diagram batang, diperoleh sajian sebagai berikut:

2. Kemudian doubleclick pada bagian gambar tersebut, sehingga terbentuk tampilan baru berupa *chart editor*

3. Pilih bagian yang akan diedit dengan mengklik bagian tersebut, bisa tiap batang atau keseluruhan. Sebagai contoh jika semua bagian akan tampak garis kuning pada sisi bagian diagram.

a la la la la la la		 (address) mandates () manager
-	10. 10	Constate
		annen Kanton kontraktion 5 11 kongenaat kontraktion – 4 Lingen
r-		All to Balance in the second of the second o
2		term 10
		- Destroyor Sc E Bestrate No E

Pengolahan Data dengan SPSS $\mid 30$

- 4. Pada properties nampak beberapa menu,
 - a. Bar Option untuk mengubah besar kecil batang dan jarak tiap batang.
 - b. Fill and border untuk mengganti warna batang (isi dan garis), tebal garis serta motif batang.
 - c. Categories untuk mengatur urutan variabel batang
 - d. Dept & angle untuk memberi efek pada batang, apakah flat, bayang-bayang atau tiga dimensi.
 - e. Chart size untuk menentukan ukuran diagram
- 5. Setelah selesai, kemudian tutup chart editor, dan di output akan diperoleh sajian data yang sudah diedit.
- 6. Editing sajian data juga berlaku untuk bentuk sajian data yang lain, tetapi dengan sedikit perbedaan menyesuaikan jenis sajiannya.

Latihan

Data di bawah ini menunjukkan waktu olah raga perminggu dan waktu online dalam jam dari berbagai pekerjaan.

Nama	Kategori Lama online perhari	Pekerjaa n	Nama	Pekerjaan	Kategori Lama online perhari
RUSDA	Sebentar	PNS	CONNY	BUMN	Lama
NINA	Sedang	Wirswasta	MARY	PNS	Sebentar
LANNY	Lama	PNS	SUSY	Wirswasta	Lama
CITRA	Sedang	PNS	USMAN	PNS	Sebentar
DINA	Lama	Wirswasta	SALIM	Wirswasta	Sedang
SISKA	Lama	BUMN	JAMES	PNS	Lama
LUSI	Lama	PNS	JONI	PNS	Sedang
LENNY	Sedang	BUMN	JONO	BUMN	Lama
RUDI	Sedang	BUMN	KRISTANT O	Wirswasta	Sebentar
ROBY	Lama	PNS	KARIM	Wirswasta	Sedang
BAMBANG	Lama	Wirswasta	MELANI	Wirswasta	Lama
YUNUS	Sebentar	PNS	RUSMIN	BUMN	Sebentar
LESTARI	Lama	PNS	SULASTRI	Wirswasta	Sedang
ERNI	Sebentar	BUMN	LILIANA	Wirswasta	Lama
ESTI	Sebentar	Wirswasta	PRIHAR	BUMN	Sedang
HANY	Lama	PNS			
HESTY	Sebentar	Wirswasta			
SUSAN	Lama	Wirswasta			
LILIS	Sedang	BUMN			
LITA	Sedang	PNS			

Sajikan data di atas dengan

- 1. Diagram batang tunggal, ganda, dan komponen
- 2. Diagram lingkaran

Lakukan editing agar sajian data menarik!

R

BAB III STATISTIKA DESKRIPTIF

Salah satu bentuk pengolahan data statistika adalah menentukan ukuran-ukuran tertentu dalam data, dalam hal ini ukuran pemusatan, ukuran letak, ukuran penyebaran data, ukuran kemiringan dan keruncingan data. Pada bab III ini akan dibahas secara rinci konsep ukuran dalam statistika dan aplikasi dengan menggunakan SPSS. karena itu setelah mempelajarinya diharapkan pembaca dapat:

- 1. Menjelaskan konsep mean, modus dan median serta menentukan nilainya dengan SPSS
- 2. Menjelaskan konsep kuartil, desil dan persentil serta menentukan nilainya dengan SPSS
- 3. Menjelaskan konsep kuartil, desil dan persentil serta menentukan nilainya dengan SPSS
- 4. Menjelaskan konsep jangkauan, varian dan simpangan baku serta menentukan nilainya dengan SPSS
- 5. Menjelaskan konsep ukuran keruncingan dan kemiringan serta menentukan nilainya dengan SPSS

A. Mean

Kumpulan data sebanyak n buah nilai akan dinyatakan dengan simbol-simbol x_1 , x_2 , x_3 , ..., x_n . Simbol n juga dipakai untuk menyatakan ukuran sampel atau besar sampel, yaitu banyak data yang diteliti dalam sampel. Untuk ukuran populasi atau besar populasi digunakan simbol N, yaitu banyak data yang diteliti dalam populasi.

Mean atau rata-rata hitung dari sekumpulan data kuantitatif dinyatakan dengan simbol \bar{x} untuk mean sampel dan μ untuk mean populasi. Rumus untuk mean atau rata-rata hitung sampel dari data tunggal adalah sebagai berikut :

$$\overline{x} = \frac{\sum x_n}{n}$$
(3.1)

$$\mu = \frac{\sum x_n}{n}$$
(3.2)

B. Modus

Modus digunakan untuk menyatakan kejadian yang paling banyak terjadi, atau data yang paling banyak muncul. Modus disimbolkan dengan Mo. Modus untuk data tunggal ditentukan dengan jalan menentukan frekuensi yang paling banyak di antara data itu.

C. Median

Median merupakan ukuran letak data setelah data disusun menurut urutan nilainya. Simbol untuk median adalah Me. Dalam menentukan nilai median, dibedakan untuk banyak data ganjil dan banyak data genap.

o Untuk **banyak data ganjil**, setelah data disusun menurut nilainya, maka median Me adalah data yang terletak **tepat di tengah**.

Misal terdapat
n buah data $x_1, x_2, \ \dots \ x_n$, dengan $x_1 \leq x_2 \leq , \ \dots \ \leq x_n$

Dan ditentukan dengan rumus :

$$Me = \frac{\chi_{n+1}}{2}$$
(3.3)

o **Untuk** banyak data genap, setelah data diurutkan, maka median adalah rata-rata hitung dari dua data yang terletak di tengah. ditentukan dengan rumus :

Me =
$$\frac{1}{2} \begin{pmatrix} x_n + x_n \\ \frac{1}{2} & \frac{1}{2} \end{pmatrix}$$
 (3.4)

Pengolahan Data dengan SPSS|34

R

D. Kuartil, Desil dan Persentil

Seperti halnya dengan median, kuartil, desil dan persentil juga menentukan letak data. Kalau median membagi sekumpulan data menjadi 2 bagian yang sama banyak, maka kuartil membaginya menjadi 4 bagian yang sama banyak dan ketiga bilangan pembaginya disebut dengan kuartil, yang dilambangkan secara berurutan mulai dari yang paling kecil dengan K_1 , K_2 , dan K_3 . Letak kuartil ke_{-i}, diberi lambang K_i ,

ditentukan oleh rumus:

$$Ki = \text{data ke } \frac{i(N+1)}{4}$$
, dengan $i = 1, 2, 3$ (3.5)

Sedangkan Desil membaginya menjadi 10 bagian yang sama banyak, dan persentil membaginya menjadi 100 bagian yang sama banyak, sehingga untuk mendapatkan rumus, cukup dengan mengganti nilai pembagi pada rumus median.

Letak desil ke-i lambangnya adalah Di, dan rumusnya adalah:

Letak D_i = data ke
$$\frac{i(N+1)}{10}$$
, dengan i = 1, 2, ...9 (3.6)

Letak persentil ke-i lambangnya adalah *Pi*, dan rumusnya adalah:

Letak P_i = data ke
$$\frac{i(n+1)}{100}$$
, dengan i = 1, 2,...99 (3.7)

hubungan antara median, kuartil, desil dan persentil adalah :

- 1. Me = $K_2 = D_5 = P_{50}$
- 2. K₁ = P₂₅
- 3. K₃ = P₇₅

Aplikasi Dengan SPSS

Misalnya terdapat nilai matematika 16 siswa 7, 8, 9, 7, 8, 9, 7, 9, 8, 8, 8, 9, 6, 5, 6, 7, akan ditentukan nilai mean, modus, median, kuartil, persentil ke 10 dan 60

Pada program SPSS untuk menentukan nilai dari masingmasing ukuran pemusatan data di atas dapat ditentukan melalui cara: menu Analyze \rightarrow Descriptive Statistics \rightarrow Frequencies

Pengolahan Data dengan SPSS|35

Analyze	Direct Marketing	Graphs	Utilities Add-ons
Reg	orts	P.	
Des	criptive Statistics	•	Frequencies
Tab	les	- F	Descriptives
Cor	npare Means	- F	A. Explore
Ger	eral Linear Model	. К	ale Explore
Ger	eralized Linear Mod	tels 🕨	Energia Crosstaps
Mixe	d Models		Ratio
Cor	relate	- P.	P-P Plots
Reg	ression	- P	Q-Q Plots
Log	linear	- F	
Neu	iral Net <u>w</u> orks	N	
Cla	Classify		
Dim	ension Reduction	- F	-
Sca	le	- E	
Nor	parametric Tests	Þ.	
Fore	ecasting		
Sun	vival	P.	
Mult	Multiple Response		
Mis:	sing Value Analysis	in 1	
Mult	iple Imputation		
Cor	nplex Samples	F	
Qua	lity Control	4	
ROO	C Curve		

Gambar 3.1 Menu Analyze

Muncul tampilan berikut,

G frequenter		lanc se
Fue	paterati	Statutes Conta Exerci Greater
an form teams	voteles -) room (dense) Cancel) (ma)

Gambar 3.2 Kotak Dialog Frequencies

Kemudian pindahkan data nilai ke *Variable*, klik *statistics*, kemudian muncul tampilan:

Percentile Values Quartiles Cut points for 10 equal groups Percentile(s)	Central Tendency ✔ Mean ✔ Megian ✔ Mode
Add 10.0 Change 60.0	E Sum
Dispersion	 Distribution
Std. deviation 📄 Minimum	Skewness
Variance Maximum	🖾 Kurtosis

Gambar 3.2 Kotak Dialog Frequencies : Statistics

Centang pada bagian yang dikehendaki, yaitu : *quartile*, *percentile* (isikan 10 klik add, dan 60), mean, median dan mode. Klik *continue* dan ok. Dalam *file* **Output** didapat:

Statistics			
Nilai			
N	Valid	16	
	Missing	0	
Mean	7.56		
Median	8.00		
Mode	8		
Persentiles	10	5.70	
	25	7.00	
	50	8.00	
	60	8.00	
	75	8.75	

Gambar 3.3 Output Statistics

Dari <i>Outpu</i>	t di atas didapatkan nilai
mean	= 7,56,
modus	= 8,
median	= 8,
K_1	= 7,
K ₂	= 8,
K ₃	= 8,75,
P ₁₀	= 5,7 dan
P ₆₀	= 8.

Sedangkan N valid = 16 berati kesemua data telah diproses tanpa ada yang hilang (missing = 0)

E. Jangkauan, Varians Dan Simpangan Baku

Jangkauan (*range*) digunakan untuk melihat atau menentukan perbedaan antara data yang paling besar dengan data yang paling kecil. Jika terdapat data $x_1, x_2, x_3, ..., x_n$, maka :

Jangkauan = $x_n - x_1$ (3.8)

Simpangan baku (standard deviation) merupakan ukuran simpangan yang digunakan untuk mengetahui tingkat penyebaran data terhadap nilai rata-ratanya. Sedangkan pangkat dua dari simpangan baku disebut **Varians**.

Jika sebuah data berukuran n dengan data x_1, x_2, \dots, x_{n_r} maka simpangan baku dapat ditentukan dengan :

$$s^{2} = \frac{\sum (x_{i} - \bar{x})^{2}}{n - 1}$$
(3.9)

atau

$$s^{2} = \frac{n \sum x_{i}^{2} - (\sum x_{i})^{2}}{n(n-1)} \quad (3.10)$$

Pengolahan Data dengan SPSS| 38

Aplikasi Dengan SPSS

Misalnya terdapat nilai matematika 16 siswa 7, 8, 9, 7, 8, 9, 7, 9, 8, 8, 8, 9, 6, 5, 6, 7, akan ditentukan nilaiukuran penyebaran datanya,langkah-langkahnya sebagai berikut:

Gambar 3.4 Menu Analyze

Muncul tampilan berikut,

G frequencies		Same and
Pus.	Determine the second se	Statutes Otafa. Exercit Quarker
2 gog an France	o toles 	1948

Gambar 3.5 Kotak Dialog Frequencies

Kemudian pindahkan data nilai ke *Variable*, klik *statistics*, kemudian muncul tampilan:

Percentile Values Quartiles Cut points for: 10 equal group	Central Tendency Mean Median
Percentile(s):	Mode
Change 60.0 Remove	Values are group midpoint
Dispersion	Distribution
🖌 Std. deviation 🦳 Minimum	🕅 Ske <u>w</u> ness
Variance	Eurtosis

Gambar 3.6 Kotak Dialog Frequencies : Statistics

Klik Continue dan Ok, didapatkan *Output* di bawah ini:

	cs	
Nilai		
N	Valid	16
	Missing	0
Std. Error	.302	
Std. Devia	1.209	
Variance		1.463
Range		4

Gambar 3.7 Output Statistics

F. Ukuran Kemiringan Dan Ukuran Keruncingan

Ukuran Kemiringan/Skewness (Sk) adalah ukuran yang menyatakan derajat ketidaksimetrisan suatu kurva dari suatu distribusi frekuensi. Untuk menyelidiki kemiringan suatu kurva, dilakukan dengan menentukan nilai koefisien kemiringannya, dalam hal ini dapat dilakukan dengan menentukan:

a. Koefisien Pearson,

$$Sk = \frac{\overline{x} - Mo}{s} \tag{3.11}$$

Jika dalam suatu data memiliki nilai Mo lebih dari satu, maka dapat digunakan rumus:

$$Sk = \frac{3\left(\bar{x} - Me\right)}{s} \tag{3.12}$$

b. Koefisien Bowley,

$$Sk = \frac{K_3 + K_1 - 2K_2}{K_3 - K_1}$$
(3.13)

atau

$$Sk = \frac{P_{90} + P_{10} - 2P_{50}}{P_{90} - P_{10}}$$
(3.14)

dengan:

Sk = *Skewness* (koefisien kemiringan)

x = rata-rata

Me = median

Mo = modus

 K_1 = kuartil ke 1

 K_3 = kuartil ke 1

 P_{10} = Persentil ke 10

 P_{50} = Persentil ke 50 = Median

 P_{90} = Persentil ke 10

Berdasarkan nilai *Sk* yang diperoleh, suatu kurva dapat digolongkan menjadi 3 jenis, yaitu:

 Kurva positif (*Positively Skewned*), yaitu bentuk kurva yang cenderung miring ke kiri, atau nilai dari suatu data cenderung banyak yang berada di sebelah kiri, kurva positif didapat jika nilai Sk > 0.

Perhatikan kurva berikut:

Grafik 3.1 Kurva Negatif

2. Kurva negatif (*Negatively Skewned*), yaitu bentuk kurva yang cenderung miring ke kanan, atau nilai dari suatu data cenderung banyak yang berada di sebelah kanan, kurva positif didapat jika nilai Sk < 0.

Perhatikan kurva berikut:

Grafik 3.2 Kurva Negatif

3. Kurva simetris, yaitu bentuk kurva yang seimbang pada bagian kiri dan kanan, kurva ini memiliki nilai modus, median dan rata-rata yang sama, Kurva simetris didapat jika nilai Sk = 0.

Perhatikan kurva berikut:

Grafik 3.3 Kurva Simetris

2. Ukuran Keruncingan / Kurtosis (K)

Ukuran Kurtosis (K) adalah ukuran mengenai tinggi rendahnya atau runcingnya suatu kurva yang berdistribusi normal. Untuk menghitung tingkat keruncingan suatu kurva dapat digunakan perhitungan koefisien kurtosis kuartil sebagai berikut :

$$K = \frac{K_3 - K_1}{2(P_{90} - P_{10})}$$
(6.5)
Keterangan :
 K_1 = kuartil ke 1
 K_3 = kuartil ke 1
 P_{10} = Persentil ke 10
 P_{50} = Persentil ke 50 = Median
 P_{90} = Persentil ke 10

Berdasarkan nilai *K* yang diperoleh, suatu kurva dapat digolongkan menjadi 3 jenis, yaitu:

 Kurva *Leptokurtis*, yaitu bentuk kurva yang memiliki puncak yang runcing sekali / lancip, kurva *Leptokurtis* didapat jika nilai K > 0,263.

Grafik 3.4 Kurva Leptokurtis

2. Kurva *Mesokurtis*, yaitu bentuk kurva yang memiliki puncak yang mendatar / tidak begitu runcing, kurva *Mesokurtis* didapat jika nilai K = 0,263.

Grafik 3.5 Kurva Mesokurtis

 Kurva *Platikurtis*, yaitu bentuk kurva yang memiliki puncak yang agak mendatar / tumpul, kurva *Platikurtis* didapat jika nilai K < 0,263 kurva.

Grafik 3.6 Kurva Platikurtis

Pengolahan Data dengan SPSS $\mid 44$

G. Aplikasi Dengan SPSS

Misalnya terdapat nilai matematika 16 siswa 7, 8, 9, 7, 8, 9, 7,

9, 8, 8, 8, 9, 6, 5, 6, 7, akan ditentukan nilai

menu Analyze \rightarrow Descriptive Statistics \rightarrow Frequencies

ALLWYSE .	Detect International	Interio.	genes adoption
Rog	oriu		(SCT) (TTT) (E
Des	triplive Statutics	19.17	II2 FILMATION
Tub	41		LE Concreteine
cong	agare Medita	334 3	A Craises
544	what Lanator Models	- 73 H	THE PROPERTY.
Ger	woulded Lines: Med	10.0	The second second
180.00	d Modelle	- O -	III Base
good	wate:	- 19 H	moreno.
Beg	PROVINE:	19.12	副空母門(林)
6.20	Shalor.	1.61	and a second second
- C Films	nat/Networks	2.4	
cta	indy.	1.6	
Dire	entition Reduction	2.6	
1.548	M	3.6	
- Non	giorgenative Tanta	1.0	
Post	ecastro .	1.6	
San	evet	. 6	
11/1	take Response	1.00	
ALL MADE	Ling Yoke Analysis	202	
104	spie Emplation		
Cor	spection point.		
Que	We Corbini	. +	
10 ROI	0.Outypi	100	

Gambar 3.8 Menu Analyze

Muncul tampilan berikut,

G frequencies		laint a
100	ptoen	Statutes Chafa Exercit Overstan
al Qoran traver	otoles • Denis (Band) Catcal	

Gambar 3.9 Kotak Dialog Frequencies

Kemudian pindahkan data nilai ke *Variables,* klik *statistics,* kemudian muncul tampilan:

Quarties	Cintra Tendera:
E Extentia(s)	E #291
- Internet	C vijes se proprikasi
Clapation	Gutthdee
12 dat. deviation 11 Management	Ccongrad St
	- Katorie

Gambar 3.10 Kotak Dialog Frequencies : Statistics

Aktifkan Skewness dan Kurtosis, klik ok dan didapatkan Output:

Statistics		
Valid	16	
Missing	0	
Skewness		
Std. Error of Skewness		
Kurtosis		
Std. Error of Kurtosis		
	Statistics Valid Missing of Skewness of Kurtosis	

Gambar 3.11 Output Statistics

Dari *Output* di atas, didapatkan nilai kemiringan adalah -0,554 sehingga termasuk kurva negatif, dan nilai keruncingan adalah - 0,322 sehingga termasuk kurva leptokurtik.

Latihan

Berikut data banyaknya waktu olah raga perminggu dalam jam dari sekelompok komunitas MOGE;

Nama	Olah Raga Perminggu (Jam)	Nama	Olah Raga Perminggu (Jam)
RUSDA	5.0	YUNUS	3
NINA	3.0	LESTARI	2.5
LANNY	3.8	ERNI	3.1
CITRA	5	ESTI	3.7
DINA	2.5	HANY	3.9
SISKA	2.9	HESTY	3.5
LUSI	3.5	SUSAN	2.4
LENNY	3.9	LILIS	3.7
RUDI	3.4	LITA	3.9
ROBY	2.4	BAMBANG	3.0

Tentukan nilai;

- 1. Ukuran pemusatan data
- 2. Ukuran letak data
- 3. Ukuran penyebaran data
- 4. Ukuran kemiringan dan keruncingan data

BAB IV PEMERIKSAAN DATA

Pemeriksaan data perlu dilakukan untuk menjamin pemenuhan asumsi tertentu dalam data sebelum dilakukan analisis lebih lanjut. Pada bab IV ini akan dibahas secara rinci tentang beberapa pemeriksaan data dengan menggunakan SPSS. karena itu setelah mempelajarinya diharapkan pembaca dapat:

- 1. Melakukan pemeriksaan normalitas data
- 2. Melakukan pemeriksaan homogenitas data
- 3. Melakukan pemeriksaan terhadap pencilan
- 4. Melakukan pemeriksaan terhadap data missing

A. Pemeriksaan Normalitas Data

Pada statistik parametrik asumsi normalitas sangat diperlukan, hal ini bertujuan untuk mengetahui apakah sampel yang diambil berdistribusi normal. Jika penyimpangan terhadap asumsi kenormalan maka mengakibatkan keabsahan kesimpulan yang diambil tidak terpenuhi, hal ini disebabkan karena statistik hitung yang digunakan dalam statistik parametrik diturunkan dari fungsi distribusi normal.

Uji normalitas data dapat dilakukan dengan:

- 1. Histogram
- 2. Normal Probabilty Plot
- 3. Kolmogorov smirnov

APLIKASI DENGAN SPSS

Sebagai contoh, sebuah perusahaan rumah tangga mendata karyawan yang bekerja, seperti pada bab 2.

KARYAWAN	USIA	GAJI AWAL (RIBU)	GAJI AKHIR (RIBU)
А	24	500	560
В	35	700	770
С	25	550	745
D	33	820	850
E	35	650	650
F	33	990	990
G	25	475	540
Н	25	650	750
I	30	820	850
J	27	815	820
К	27	725	740
L	31	770	790
М	30	650	700
N	33	450	500
0	33	800	825
Р	22	700	725
Q	24	750	724
R	23	680	723
S	26	815	892
Т	25	718	892

Tabel 1. Data Karyawan

1. Grafik Histogram

Pada data di atas akan diuji apakah usia karyawan berdistribusi normal dengan menggunakan grafik *Histogram*, langkah-langkah sebagai berikut:

 $Graph \rightarrow Legacy \rightarrow Dialog \rightarrow Histogram$

Pengolahan Data dengan SPSS $\mid 49$

🚵 Ghart Kulton. 🔛 Graphicsont Template Chonser.	I 490
(again) Denings	 Box. <li< th=""></li<>

Gambar 4.1 Menu Graph

Muncul kotak *Dialog* hitogram, pindahkan variabel usia karyawan ke kotak variabel, aktifkan *Display nomal curve*.

Con Marganity So Prediction Tender Prediction Tender Total Interd Rays. Case Interd Rays. Case Interd Sciences Case Here Classifier:	Product and
Treates () pointer sectors () ()	n fors

Gambar 4.2 Kotak Dialog Histogram

Klik Ok, didapatkan **Output**

Gambar 4.3 Output Histogram

Dari gambar di atas, terlihat *Histogram* masih mengikuti kurva normal, sehingga data usia karyawan dapat dikatakan berdistribusi normal.

2. Diagram PP-Plot

Selain itu, Pada data di atas juga akan diuji apakah usia karyawan berdistribusi normal dengan menggunakan *Normal Probability Plot*, langkah-langkah sebagai berikut:

Analyze ---- Descriptive Statistics ------ P-P Plot

Gambar 4.3 Menu Analyze

Muncul kotak *Dialog* P-P *Plot*, pindahkan variabel usia karyawan ke kotak variabel, aktifkan *Test distribution normal* dan *Estimate from data*.

21+1Hy		
 Presidence Taracter Taran Unsuk Karya Sali Anto (Saj Sarad) Sali Anto (Saj Sarad) Sali Anto (Sali Sarad) 	aratan. Artan Kashara tang	See Contraction Portuge 1 Contraction Portuges VErdinate From Calo Lines 1
	Tasuten	Poperan Derman Fairan Bigierni Olitaretti Olitaren Olitar dergaeraren
	Defenence	Face Assessed in Tea B Bear C High C Low C Disaglies and with

Gambar 4.4 Kotak Dialog P-P Plots

Klik Ok, didapatkan Output

Gambar 4.5 Output P-P Plots

Dari gambar di atas, terlihat titik-titik masih mengikuti garis diagonal, sehingga data usia karyawan dapat dikatakan berdistribusi normal.

3. Uji kolmogorov-Smirnov

Pengujian normalitas data di atas bersifat visual, untuk lebih meyakinkan akan dilakukan Pengujian normalitas dengan teknik uji hipotesis menggunakan *Kolmogorov-Smirnov* dengan alfa **0,05**.

Pada data di atas akan diuji menggunakan *Kolmogorov-Smirnov,* langkah-langkah sebagai berikut:

Menentukan hipotesis,

H₀ : data berdistribusi normal

H₁: data tidak berdistribusi normal

Tolak H_0 jika sig < α ,

Dengan menggunakan SPSS, mulai dengan:

Analyze → Kolmogorov-Smirnov → Legacy Dialog → 1-Sample K-S

Pengolahan Data dengan SPSS|53|

des Tea Total		100		Contraction of the local division of the loc
Wales Destillativite: Qui	to United S	MSyrpi Virgin	. the	
:Gegodo b	111	ス国は	-1111	Q. B. 39
Deckto-Materia F	1-114-10	AL RULL OF	CHILL CONN.	
Telder +			Contraction of the	
Corporations 1	America Co			11-10 C
general Linear Model. 1	- 660	[86]		- n - n
Generalized Locks Marland, F	200	101		
where the state of	- 48	545		
Constant, A	000	1.006		11
Hadrandon F	615	000		
Cardinian I	240	000		
Concernation and a local distance of the	-485	5.541		
The state of the s	650	184		
- And	025	668		
Contraction of	315	6.01		
sda i	3 104		-	
Perokoneter sens	A Ger Lat	gia .	0.0	111
Panaspig b	America	Set the part of the	1	
9.000	E ENDER	theradau.	5	
Myther Products 1	Louise C	k Moon	ET BECOM	66 ·
E many value reary as	1 792	125		
ingly include +	700	TIM	EL grante	
Complex Serverise 1	080	173	2012 mil.	
Quarty Commit	015	852	100 1-24 VO	8P(\$)
ERCC Cove	215	0.01	AND 2 Million	indent Campion .
and a state of the	2		Call in Protocol	inform Diemphra
			(C) 2 Datate	d Control on
			and a viscous	10000
			BUL S Danses	FURDAL.

Gambar 4.6 Menu Analyze

Masukkan Usia Karyawan ke *Test Variable List*, aktifkan *Normal*, didapatkan *Output*:

🖉 Gaji Awal [Gaji_awal] 🖉 Gaji Akhir (Saat ini)	Test Variable List 🖉 Usia Karyawan [Usia]	Exact. Options
Test Distribution		
Polsson 🖾 Exponential		

Gambar 4.7 Kotak Dialog One Sample Kolmogorov-Smirnov TesKlik OK

Pengolahan Data dengan SPSS $\mid 54$

	-1	1	1.	
13	into	all	1	20
13	1	all -		
	1	20		

One-Sample Kolmogorov-Smirnov Test				
		Usia Karyawan		
N		20		
Normal Daramators ^{a,b}	Mean	28.30		
Normal Parameters	Std. Deviation	4.281		
	Absolute	.180		
Most Extreme Differences	Positive	.180		
	Negative	164		
Kolmogorov-Smirnov Z		.803		
Asymp. Sig. (2-tailed)	.539			
a. Test distribution is Norr	nal.			
b. Calculated from data.				

Gambar 4.8 Output One Sample Kolmogorov-Smirnov Tes

Dari **Output** di atas, didapat nilai Asymp. Sig. (2-tailed) = 0,539, sehingga > α . Jadi terima H₀. Sehingga dapat disimpulkan data usia karyawan berditribusi normal.

B. Pemeriksaan Homogenitas Data

Apabila suatu penelitian yang bertujuan untuk membandingkan dua kelompok data atau lebih maka perlu dilakukan pengujian kesamaan varian atau ragam yang disebut dengan uji homogenitas, sehingga dua kelompok data atau lebih itu layak untuk dibandingkan (*comparable*). Dua kelompok data atau lebih dapat dibandingkan jika memiliki varians yang sama (homogen). Sebagai contoh, pada tabel di bawah ini akan diuji apakah nilai dari kelompok A dan B memiliki varians yang homogen.

Kelomp	Kelompok A		ok B
No. siswa	Nilai A	No. Siswa	Nilai B
1	85	1	80
2	90	2	72
3	82	3	92
4	86	4	82
5	87	5	77
6	97	6	67
7	67	7	78
8	77	8	79
9	87	9	82
10	78	10	66
11	68	11	69
12	68	12	77
13	77	13	82
14	77	14	67
15	85	15	74

Tabel 2 Hasil tes membaca siswa kelas I SD

Langkah-langkah analisis dengan sebagai berikut:

1. Merumuskan hipotesis

 $H_0: \sigma_A^2 = \sigma_B^2$ atau

kedua kelompok memiliki varians yang homogen

 $H_1: \sigma_A^2 \neq \sigma_B^2$ atau

kedua kelompok memiliki varians yang tidak homogen Tolak H₀ jika sig < α ,

Pada Variable View, definisikan:

Variabel 1

Name : Nilai

Type : Numeric, Decimal: 0, Width: 8,

Label : nilai Kelompok, measure : scale,

adapun variabel lain sesuai default program

Variabel 2

Name	: metode
Туре	: Numeric, Decimal: 0, Width: 8

Pengolahan Data dengan SPSS $\mid 56$

Label : metode pembelajaran, values : 1 = metode A, 2 = metode B, measure : scale, adapun variabel lain sesuai default program.

Sehingga pada Variable View menjadi:

쇼 *sa	ampel b	ebas.sav (DataSe	et0] - IBM SPSS	Statistics Data	Editor						
File	Edit	⊻iew <u>D</u> ata	Transform A	nalyze Dire	ct <u>M</u> arketing	<u>G</u> raphs <u>U</u> tilities Add- <u>o</u> ns <u>W</u>	indow	<u>H</u> elp			
Ē	16			¥ 📱							
		Name	Type	Width	Decimals	Label	Valu.	Mis	C	Align	Meas
l i	1	Nilai	Numeric	8	0	nilai Kelompok	None	None	8	疆 Right	Scale 🖉
	2	Metode	Numeric	8	0	metode Pembelajaran	None	None	8	遍 Right	Scale 🖉
	3	Ta Value Lat	pels		1 - 1	X					
	4										
	5	Value La	bels								
	6	Value:		7		Spelling					
	7	Label		1		Contracting of the local division of the loc					
	8	2000	ſ								
	9		1 = "Meti	ode A" de D"							
	10	<u>A</u>	dd 2 - Web	Jue D							
	11	Cha	inge								
	12	Ren	nove								
	13										
	14										
	15		(OK Can	cel Help						
	16	1	-	-		J					

Gambar 4.9 Variable View dan kotak Dialog Value Labels

Setelah dilakukan langkah 1, maka pada data *View* muncul seperti di bawah ini, dan data sudah dimasukkan:

		1 Allafutti
1	1.00	FileEadoy (A.
	W	Noterra A
1	40	White A
	0.00	Maturity A.
6	- 44	Manufe A.
		distantly A.
Y	40	Library A.
	11.	fdame A
2	49	October 3.
40	W.	Advanta A
16		belinning A.
ù.	10.00	Absorber A.
1.1	11	Manade A
14.	W.	Administra di
14	- W	Valuence A.
64		tenness if
47	12	PARATU IS
14		Distance of
10	646	bilariate il.
éa	100	Distance of
**	- 44	Philada B
12	14	NAME AND ADDRESS OF
15	01.5	Addition to
4	100	PARLAS IS
16	- 64	INPUT IN CO.
	THE REPORT OF	

Gambar 4.10 Data View

Gambar 4.11 Menu Analyze

Kemudiam didapatkan kotak *Dialog* Explore:

	Cebendert List Ørstel Keilompoli (filde) Forder List Ørsetarte Perzbetalar Label Cases op	Statistics Fitzja Qohorn Boolstrad
Dirpley ® Bith O Statutes O Pice	Recet Carcel Hus	

Gambar 4.12 Kotak Dialog Explore

Masukkan variabel nilai kelompok ke *Dependent List,* dan metode pembelajaran ke *Factor List*. Kemudian klik *Plot,* didapatkan kotak *Dialog Explore: Plots*

PANALIAIS	Descriptive
@ Eactor levels together	Stem-and-leaf
Dependents together	🖾 Histogram
O None	
Spread vs Level with Leven O Nong	ie Test
Spread vs Level with Leven	e Test
Spread vs Level with Lever O Nong Power estimation O Transformed Power in	e Test

Gambar 4.13 Kotak Dialog Explore: Plots

Aktifkan *Factor Level Togather* dan *Power Estimation, klik Continue* dan kembali ke kotak *Dialog Explore*. Klik Ok didapatkan *output*:

Test of Homogeneity of Variance								
		Levene	df1	df2	Sig.			
		Statistic						
	Based on Mean	.760	1	28	.391			
Nilai	Based on Median	.729	1	28	.400			
Nildi Kalampak	Based on Median and with	720		7.6	401			
кеюттрок	adjusted df	.729		24	.401			
	Based on trimmed mean	.719	1	28	.404			

Gambar 4.14 Output Test of Homogeneity of Variance

Dari Output Test of Homogeneity of Variance di atas didapatkan nilai sig untuk based on mean = 0,391, berarti sig > α ,

Pengolahan Data dengan SPSS $\mid 59$

sehingga terima H₀, diperoleh kesimpulan $\sigma_A^2 = \sigma_B^2$ atau kedua kelompok memiliki varians yang homogen.

C. Pengecekan Pencilan

Pencilan atau *outlier* merupakan data ekstrim yang berbeda dari data lainnya, pencilan dapat terjadi dari:

- 1. Kesalahan dalam memasukkan data,
- 2. Kesalahan dalam sampling
- 3. Kondisi data sebenarnya.

Penanganan data pencilan:

- 1. Melakukan pengecekan terhadap data mentah, apakah memang terjadi kesalahan memasukkan data atau pada samplingnya.
- 2. Jika tidak maka data pencilan tersebut bisa dihilangkan, atau dipertahankan apa adanya, tentunya dengan alasan-alasan tertentu.

Pengujian data pencilan dapat dilakukan dengan menggunakan diagram kotak garis (*box Plot*). Sebagai contoh pada data karyawan di atas akan diuji apakah pada gaji awal dan gaji akhir terdapat data pencilan. Langkah-langkahnya sebagai berikut:

$\mathsf{Klik}: \mathit{Graph} \rightarrow \mathit{Legacy} \rightarrow \mathit{Dialog} \rightarrow \mathit{Box} \mathit{Plot}$

Gambar 4.15 Menu Graphs

Diperoleh kotak *Dialog* Box *Plot*, pilih *Simple*, aktifkan *Summaris Of Separate Variables*, klik *Define*:

₿₿¢₿	Simple
Ø Ø	Clustered
Data ir	I Chart Are
🔘 Sun	nmaries for groups of cases
Sun	nmaries of separate variables

Gambar 4.16 Kotak Dialog Box Plot

Masukkan gaji awal dan gaji akhir pada Boxes Represent,

	Dover Represent	Conversion of the local division of the loca
🚡 tao anatan ku 🖉 Kita Kajawa Kuaj	Can have the part of the set of t	
	Licel Cheer of	
	Roge	Ĩ
	E bronnaber barret des Contex	
	The branches and the set	

Gambar 4.17 Kotak Dialog Define Simple Box Plot

klik OK didapatkan *output* di bawah ini.

Gambar 4.18 Output BoxPlot

Dari Gambar 4.18, untuk gaji awal tidak terdapat pencilan, karena semua data masih masuk dalam *boxPlot*. Tetapi untuk data gaji akhir terdapat pencilan yaitu data ke 14.

D. Pemeriksaan Missing Data

Missing Data merupakan data kosong atau yang belum terinput dalam sekumpulan data yang akan dianalisis. Keberadaan *missing* data akan menyebabkan nilai-nilai ukuran data menjadi bias. Pemeriksaan missing data dapat dilakukan dengan melihat statistik deskriptif (bab III). Sebagai contoh output di bawah ini:

Statistics					
Nilai					
Ν	N Valid				
	Missing	0			
Mean	7.56				
Median	8.00				
Mode	8				
Persentiles	10	5.70			
	7.00				
	8.00				
	60	8.00			
	75	8.75			

Pada output di atas missing ada = 0, menunjukan bahwa data lengkap, namun jika menunjukan nilai tidak sama dengan nol berarti terdapat data kosong sebanyak nilai tersebut. Setelah melakukan pemerikasaan data, yang perlu dilakukan adalah adalah sebagai berikut:

- 1. Apabila data tidak berdistribusi normal, peneliti dapat melakukan penambahan data, dengan dasar bahwa semakin banyak data akan mendekati distribusi normal. Selain itu juga dapat dilakukan dengan mengganti analisis dari statistik parametrik ke statistik nonparametrik.
- 2. Apabila terdapat outlier, peneliti dapat melakukan pengecekan data outlier tersebut, apakah memang benar atau terjadi kesalahan input data. Jika memang outlier itu benar ada, maka dapat dipertimbangkan tidak memasukkan data tersebut dalam analisis, dikarenakan dapat mengganggu dalampengambilan kesimpulan.
- 3. Apabila dua buah data tidak homogen, maka peneliti dapat meninggalkan asumsi homogenitas dengan menggunakan nilai sig pada baris *Equal Variances Not Assumed*
- 4. Apabila terdapat missing data, peneliti dapat mengecek apakah memang data belum diinput, atau data memang belum didapatkan. Apabila komposisi data diperlukan dengan jumlah tertentu dan tidak dapat dikurangi, peneliti seharusnya melengkapi data tersebut.

Latihan

Berikut data hasil *post-test* peserta didik kelas VIII MTs Ma'arif Hidayatullah Jombang, lakukan pengujian data terhadap normalitas data dan pencilan!

No.	Nama	Post-test	No.	Nama	Post-test
1	AIR	76	14	MP	76
2	AJ	72	15	MWA	85
3	ALF	69	16	MWAS	67
4	AS	75	17	MO	80
5	BSL	77	18	MJA	79
6	BM	68	19	PW	70
7	DM	80	20	РМ	78
8	DA	78	21	RW	75
9	EF	75	22	RP	65
10	FA	76	23	SK	90
11	KA	72	24	WD	65
12	LF	76	25	ΥK	78
13	LE	90	26	WN	90

BAB V UJI PERBEDAAN RATA-RATA

William Sealy Gosset

(13 Juni 1876 – 16 Oktober 1937) seorang statsitikawan yang terkenal dengan nama samaran **Student** dan temuannya disebut distribusi t-Student.

Dalam bab ini akan dibahas tentang penelitian tentang perbedaan satu

sampel dan dua sampel, dalam hal ini teknik yang digunakan adalah *"uji-t"*. Asumsi dalam uji ini adalah data harus berdistribusi normal. Setelah mempelajarinya diharapkan pembaca dapat:

- 1. menjelaskan konsep uji t satu sampel dan aplikasinya dengan SPSS
- 2. menjelaskan konsep uji t dau sampel bebas dan aplikasinya dengan SPSS
- 3. menjelaskan konsep uji t satu sampel berpasangan dan aplikasinya dengan SPSS

Secara garis besar langkah-langkah yang ditempuh dalam pengujian hipotesis adalah :

1). Merumuskan hipotesis dan menentukan taraf kesalahan (lpha)

- 2). Memasukkan dan mengolah data ke dalam SPSS
- 3). Melakukan analisis
- 4). Uji hipotesis

a. Menguji Nilai t _{hitung} terhadap t _{tabel}

aturan untuk pengujian nilai $t_{\mbox{\tiny hitung}}$ dengan t $_{\mbox{\tiny tabel}}$ adalah :

- Apabila $t_{hitung} \ge t_{tabel}$ maka H_0 ditolak
- Apabila t _{hitung} < t _{tabel} maka H_O diterima
- b. Menguji Nilai sig terhadap lpha
- Jika Sig > α , maka H_O diterima.
- Jika Sig < α , maka H_O ditolak.

5). Menarik kesimpulan

A. Uji Perbedaan Rata-Rata Satu Sampel

Uji perbedaan rata-rata satu sampel digunakan untuk menguji apakah terdapat perbedaan rata-rata data berdasarkan asumsi rata-rata atau nilai tertentu (*test value*).

Rumus uji satu sampel ditulis:

$$t = \frac{x - \mu_0}{s / \sqrt{n}} \tag{5.1}$$

 \mathcal{X} = rata-rata sampel

 μ_0 = asumsi rata-rata

S = standar deviasi sampel

n = banyaknya sampel

Sebelum melakukan uji perbedaan rata-rata, data harus dipastikan memenuhi ketentuan berdistribusi normal.

Contoh :

Diberikan data nilai ulangan matematika di salah satu SMAN Kota X pokok bahasan persamaan kuadrat sebagai berikut:

70, 87, 78, 89, 76, 78, 77, 78, 67, 67, 75, 84, 98, 80, 90, 80, 90, 86, 86, 87, 80, 78, 75, 80, 86, 95.

Dengan menggunakan taraf signifikasi 5 % dan asumsi normal terpenuhi, ujilah apakah rata-rata nilai matematika tersebut sama dengan 80?

Langkah-langkah analisis dengan sebagai berikut:

Pada variabel *View*, definisikan:

Variabel 1

Name : Nilai

Type : Numeric, Decimal: 0, Width: 8,

Label : nilai ulangan, *measure* : *scale*, adapun variabel lain sesuai *default* program

Klik Analyze \rightarrow Compare Means \rightarrow One-Sample T Test sehingga kotak dialog One-SampleT Test

Gambar 5.1 Menu Analyze

Kemudian muncul kotak dialog:

a concession of the second	Test Variable(s)	
🖉 Nilai Ulangan (nilai)	•	Bootstrap
Cok (1	Test <u>V</u> alue: 80	l Help

Gambar 5.2 Kotak Dialog One Sample T Test

Pindahkan *Variable* **Nilai Ulangan** ke kotak *Variable*(s) dengan menekan tombol panah, Pada kotak *Test Value* masukkan nilai 80.

Gambar 5.3 Kotak Dialog One Sample T Test

Klik tombol *Option* sehingga kotak dialog *One-Sample T Test*: *Option* muncul. Tentukan taraf kepercayaan 95 % (alfa 5 % atau 0,05).

<u>C</u> onf	dence In	terval f	Percenta	ge: 95	59
Mis	sing Valu	les			
0	Exclude o	ases a	analysis	by anal	ysis
0	Exclude o	ases I	istwise		

Gambar 5.4 Kotak Dialog One Sample T Test : Options

Klik tombol *Continue* sehingga akan kembali pada kotak dialog *One-Sample T Test*.

Klik tombol OK sehingga SPSS *View*er akan memunculkan *output* tabel *One-Sample Test* berikut:

	One-Sample Test													
		Test Value = 80												
	t	Df	Sig. (2-	Mean	95% Confiden	ce Interval of								
			tailed)	difference	the Diff	erence								
					Lower	Upper								
Nilai Ulangan	.928	25	.362	1.423	-1.74	4.58								

Tabel 5.1 Output One Sample T Test

Uji hipotesis

Hipotesis nol yang akan diuji adalah

 $H_{0}: \mu = 80$ Atau

"rata-rata nilai nilai ulangan harian matematika pokok bahasan persamaan kuadrat sama dengan 80"

Terdapat dua cara dalam pengujian hipotesis, yaitu:

a. Menguji Nilai $t_{\mbox{\scriptsize hitung}}$ terhadap $t_{\mbox{\scriptsize tabel}}$

Dari *output* di atas didapatkan nilai t_{hitung} = 0,925, dengan taraf signifikasi 5 % atau taraf kepercayaan 95%, maka besarnya angka batas penolakan hipotesis nol atau t_{tabel} adalah 2,060, sehingga nilai t_{hitung} < t_{tabel}, karena itu hipotesis nol diterima, atau:

b. Menguji Nilai sig terhadap lpha

Nilai sig dari *output* didapatkan 0,362, sedangkan nilai alfa = 0,05

sehingga Sig > α , maka H_0 diterima. Kesimpulan yang diperoleh adalah rata-rata nilai nilai ulangan harian matematika pokok bahasan persamaan kuadrat sama dengan 80

B. Uji Perbedaan Rata-Rata Dua Sampel Bebas

Uji perbedaan rata-rata dua sampel bebas digunakan untuk mengetahui apakah terdapat perbedaan rata-rata secara signifikan antara dua sampel bebas. Sampel bebas yang dimaksud adalah dua sampel yang berbeda tidak saling mempengaruhi.

Rumus uji t sampel bebas dinyatakan dalam :

$$t = \frac{M_1 - M_2}{\sqrt{(\frac{\sum x_1^2 + \sum x_2^2}{(n_1 - 1) + (n_{2I} - 1)})(\frac{1}{n_I} + \frac{1}{n_2})}}$$
(5.2)

$$df = (n_1 - 1) + (n_2 - 1)$$

Keterangan :

 $x_1 = X_1 - M_2$ $x_1 = X_1 - M_1$ $x_2 = X_2 - M_2$ dan seterusnya M_1 : angka rata-rata dari sampel pertama

 $M_{\,_2}$: angka rata-rata dari sampel kedua

 n_1 : banyaknya individu dari sampel pertama

 n_2 : banyaknya individu dari sampel kedua

df : *degree of freedom* (derajad bebas)

Asumsi yang harus dipenuhi dalam uji perbedaan rata-rata dua sampel bebas adalah:

- 1. Kedua kelompok data saling bebas (tidak saling mempengaruhi)
- 2. Kedua kelompok data berdistribusi normal
- 3. Kedua kelompok data memiliki varians yang homogen.

<u>Contoh</u>

Seorang guru Sekolah Dasar (SD) mengadakan suatu eksperimen dengan tujuan untuk mengetahui perbedaan antara pembelajaran membaca metode A dan pembelajaran membaca metode B di kelas I SD. Dua kelompok siswa diberi perlakuan yang berbeda terkait dengan metode pembelajaran membaca tersebut. Pada akhir perlakuan dilakukan tes akhir kemampuan membaca siswa, dan diperoleh data seperti pada tabel di bawah ini. Apabila masing-masing data berdistribusi normal, lakukan pengujian apakah terdapat perbedaan rata-rata kemampuan membaca antara pembelajaran membaca metode A dan pembelajaran membaca metode B dengan menggunakan taraf siginifikansi 5%,!.

Hasil tes kemampuan membaca siswa kelas I SD								
Kelompok o	dengan metode A	Kelompok de	ngan metode B					
No. siswa	Nilai	No. Siswa	Nilai					
1	85	1	80					
2 90		2	72					
3	82	3	92					
4	86	4	82					
5	87	5	77					
6	97	6	67					
7	67	7	78					
8	77	8	79					
9	87	9	82					
10	78	10	66					
11	68	11	69					
12	68	12	77					
13	77	13	82					
14	77	14	67					
15	85	15	74					

Tabel 5.2 Hasil tes kemampuan membaca siswa kelas I SI

Langkah-langkah input data dan analisis dengan sebagai berikut: Pada variabel *View*, definisikan:

Variabel 1

Name : Nilai

Type : Numeric, Decimal: 0, Width: 8,

Label : nilai Kelompok, *measure* : *scale*, adapun variabel lain sesuai *default* program

Variabel 2

Name : metode

Type : *Numeric*, *Decimal*: 0, *Width*: 8,

Label : metode pembelajaran, *values* : 1 = metode A, 2 = metode B, *measure* : *scale*, adapun variabel lain sesuai *default* program.

Sehingga pada Variable View menjadi:

ta *sa	ampel b	ebas.sav [DataSe	et0] - IBM SPSS	Statistics Data	Editor	100		10.44			100	
File	Edit	View Data	Transform	Analyze Dire	ect Marketing	Graphs Utilitie	s Add- <u>o</u> ns	Window	Help			
E				× 🖺	1	#4 🔣					0	
28 12		Name	Туре	Width	Decimals	La	abel	Valu	Mis	C	Align	Meas
1	1	Nilai	Numeric	8	0	nilai Kelompok		None	None	8	酒 Right	Scale 8
	2	Metode	Numeric	8	0	metode Pembela	ajaran	None	None	8	遭 Right	/ Scale
	3	To Value Lat	vels				×					
1 3	4											
1	5	Value La	bels									
1	6	Value:				Spelli	ng					
1 3	7	Label:										
	8	East.	-									
1	9		1 = "Met	ode A"								
1	10		dd 2 = Met	ode B-								
1	11	Cha	inge									
1	12	Ren	nove									
1	13											
1 3	14			10.05								
1	15		[OK Can	icel Help]						
	16	1				<u></u>						

Gambar 5.5 Kotak Dialog Value Labels

Maka pada data *View* muncul seperti di bawah ini, dan data sudah dimasukkan:

	I New	Malania
1911	85	Makada A
3		Maturia A
1	43	Weiters A
4	38	Metoda di
4	47.	Nature A
4	97	Wetness &
T. ;	67	Metoda A
4.	72	Adesoda A
	87.	Maturia di
16	78.	Manufa A
11	44.	Wetode A
41	44	Wetoole A
11	22	Wenode A
14	22	Matore A
12.	84	Metode A
46		Wetoca B
481	12	Natione D
18.	3.2	Webste B
18.	82	Methoda B
22	11.	6/Manual D
21		Natura B
23.	78	Wetnik B
33	178	Circula B
84	42	Weterie B
28	3/- 88-	Wetnis B

Gambar 5.6 Variable View

Selanjutnya untuk menganalisis data Klik
 <code>Analyze</code> \rightarrow <code>Compare</code> <code>Means</code> \rightarrow <code>Independent-Sample</code> <code>T</code> <code>Test</code>,

Pengolahan Data dengan SPSS $\mid 72$

Societas Dava Patra	And and a second se
Analysi Dividigutating graps	a figura yearan Marten Bolo
Reports + Description Statistics + Tagnos + Copygane Unitaria +	間間 20 0000000000000000000000000000000000
General Linear Hodel + Generalized Linear Hodels + Mysid Hodels + Canadal + Discussion +	I Creating of Tast. I characteristic Constant Tast. I Foreit Constant Tast. I Creation Tast. I Creation Tast.
Lgamoa + Itacira Kogeno + Gasog + Donesioa Recicion + Doge + Borgacametro Pette Forecadag + Sonica + S	
Messie Vese Analysis Marysis Inspatiation Contegen Cantelles J Gaudy Contex F FOC Cutys	

Gambar 5.7 Menu Analyze

Sehingga kotak dialog *Independent-Sample T Test* akan muncul:

Disdependent (Lampsel) Test	1	St Defile Groups	BUN
	For Case Het	R ya madadada Giwa 3 (1 Giwa 2 (2 D gapani (2000)) (2000)	

Gambar 5.8 Kotak Dialog Independent-Sample T Test Dan Define Groups

Kemudian masukan nilai kelompok dalam tes variabel, dan metode pada *grouping variable*, kemudian klik *define group*, masukkan 1 pada *group* 1 dan 2 pada *group* 2 (sesuai pada *values*).

Klik *continue*. Kemudian klik *option* untuk memilih taraf signifikasi, jika dipilih 5 %, maka pada kotak dialog *convidence interval percentage* isikan 95 %, muncul :

Confidence Inter	val Percentage: 📴 %
Missing Values	
Exclude cas	es analysis by analysis
C Exclude cas	es listwise

Gambar 5.9 Kotak Dialog Independent-Sample T Test: Options

Klik continue	dan ok	. Pada	output	diperoleh	:
---------------	--------	--------	--------	-----------	---

	Independent Samples Test										
		Leve	ne's	t-test for Equality of Means							
	for										
		Equal	ity of								
		Varia	nces								
		F	Sig.	t	Df	Sig.	Mean	Std.	95	5%	
						(2-	differ-	Error	Confi	dence	
						tailed)	rence	Diffe-	Interva	l of the	
								rence	Differ	rence	
									Lower	Upper	
Nilei	Equal variances assumed	.760	.391	1.533	28	.136	4.467	2.913	-1.500	10.434	
Kelompok	Equal variances not assumed			1.533	27.061	.137	4.467	2.913	-1.510	10.443	

Nilai Levene's Test for Equality of Variances menunjukan bahwa sig =0,760 menunjukan bahwa data kedua data memiliki varians yang homogen. (lihat pada Bab pengujian data).

Uji hipotesis perbedaan rata-rata dengan mengacu pada nilai pada kolom *t-test for Equality of Means.*

Hipotesis nol yang akan diuji adalah

$$H_0: \mu_A = \mu_B$$

Atau

 ${\it "}$ Tidak ada perbedaan rata-rata kemampuan membaca siswa di kelas I SD antara yang diajar dengan metode A dengan metode B"

Terdapat dua cara dalam pengujian hipotesis, yaitu:

a. Menguji Nilai t $_{\rm hitung}$ terhadap t $_{\rm tabel}$

dari *output* di atas didapatkan nilai $t_{hitung} = 1,533$, dengan taraf signifikasi 5 % atau taraf kepercayaan 95%, maka besarnya angka batas penolakan hipotesis nol atau t_{tabel} adalah 2,048, sehingga nilai $t_{hitung} < t_{tabel}$, karena itu hipotesis nol diterima, atau:

b. Menguji Nilai sig terhadap lpha

nilai sig dari output didapatkan 0,136, sedangkan nilai

 α = 0,05 , sehingga Sig > α , maka H_0 diterima.

Kesimpulan yang diperoleh adalah tidak ada perbedaan ratarata kemampuan membaca siswa di kelas I SD antara yang diajar dengan metode A dengan metode B. Dengan demikian nilai perbedaan rata-rata (*Mean difference*) sebesar 4,467 merupakan sebuah selisih yang menunjukkan perbedaan yang tidak signifakan.

C. Uji Perbedaan Rata-Rata Dua Sampel Berpasangan

Apabila dalam suatu penelitian ingin mengetahui apakah ada pengaruh perlakuan yang diberikan, sehingga dilakukan uji sebelum perlakuan (*pre test*) dan sesudah perlakuan (*post test*), sehingga untuk mengetahui apakah ada pengaruh dari perlakuan tersebut dengan cara mengetahui ada tidaknya perbedaan ratarata dari nilai yang didapat dari *pre test* dan *post test*.

Dengan demikian dua sampel berpasangan maksudnya adalah satu kelompok sampel yang sama dan dilakukan dua kali uji dalam tenggang waktu yang berbeda. Syarat uji perbedaan ini hanya

R

normalitas data saja, sedangkan homogenitas varians tidak perlu karena sampel yang sama merupakan sampel yang homogen.

<u>Contoh</u>

Suatu sekolah menyelenggarakan tambahan jam pelajaran matematika bagi siswa yang memiliki nilai matematika kurang bagus pada semester pertama. Pelajaran tambahan diberikan pada awal semester sampai akhir semester kedua. Diambil 10 siswa yang mengikuti program tersebut, apabila data berdistrbusi normal dan dengan taraf signifikansi 5%, lakukan pengujian apakah ada pengaruh penambahan jam pelajaran matematika. Diperoleh data sebagai berikut:

Tabel 5. 3

Nilai matematika

No	1	2	3	4	5	6	7	8	9	10
Semester 1	5	6	4	5	6	6	5	4	6	6
Semester 2	6	6	7	6	6	7	5	5	7	6

Langkah-langkah analisis dengan sebagai berikut:

Pada variabel View, definisikan:

Variabel 1

Name : Nilai_1

Type : Numeric, Decimal: 0, Width: 8,

Label : nilai semester 1, *measure* : *scale*, adapun variabel lain sesuai *default* program

Variabel 2

Name : Nilai_2

Type : Numeric, Decimal: 0, Width: 8,

Label : Nilai semester 2, *measure* : *scale*, adapun variabel lain sesuai *default* program

Sehingga pada Variabel View menjadi:

te fu he be hann dan pedipunt dan tune sele hue be													
38	1 (A) (B	1. ani	3	加田	8.11.1		44年		à	.9	- 10	£	
in the	C faire	Terr	Non-	Dynas	Land	- Yeles	Marg	Celora	13	dage		Magaza 1	P.A
1.00	Allso, F. L.	direction.		4	What sectors 1	Anna	Mini .		10	Cella .	1	Scale .	3.96
1.1	5001	See.		III. 17	Weinenthe I	1004	1004	1	16	Sett	21	Sen .	N Intel

Gambar 5.10 Variable View

Setelah dilakukan langkah 1, maka pada data *View* muncul seperti di bawah ini, dan data sudah dimasukkan

File Edit	View Data Tra	nsforn <u>A</u> nalyz	e Direct <u>M</u> ari	ketin <u>G</u> raphs	Utilities Add-	ons Window	Hel
11:Nilai_2					Visi	ble: 2 of 2 Va	riable
	Nilai_1	Nilai_2	var	var	Var	var	
1	5	6					
2	6	6					
3	4	7					
4	5	6					
5	6	6					
6	6	7					
7	5	5					
8	4	5					
9	6	7					
10	6	6					
	8						
Data View	Variable View						

Gambar 5.11 Data View

Selanjutnya untuk menganalisis data Klik
 Analyze \rightarrow Compare Means \rightarrow Paired-Sample T Test

BM SPSS	Statistics Data Edito	r				^		
<u>A</u> nalyze	Direct <u>M</u> arketing	Graphs	Utilities	Add- <u>o</u> ns	Window	Help		
Rep Des	orts criptive Statistics	;		X		2		
Tab	les	*		Visib	le: 2 of 2 Va	riables		
Cor	npare Means	× ľ	Mean	1S				
Ger	ieral Linear Model	F	One-	Sample T	Test			
Ger	ieralized Linear Mo	dels 🕨	M Inder	- pendent-S	amples T Te	est		
Mi <u>x</u> e	ed Models	•	Paired-Samples T Test					
Cor	relate	•	Cone.		/Δ			
Reg	ression		Mi Que-	may Anon	/ n			
Log	linear							
Neu	iral Net <u>w</u> orks	•				- 1		
Cla	ssify					- 11		
Dim	ension Reduction							
Sca	le	- P.						
Nor	parametric Tests							
For	ecasțing	Þ				- 1		
Sun	vival	•						
Muli	tiple Response	۶						
🔛 Mis:	sing Value Analysis	ka l						
Mult	iple Imputation	*						
Cor	nplex Samples	*						
Qua	lity Control	•						
RO	C Curve							

Gambar 5.12 Menu Analyze

Kotak dialog *Paired-Samples T Test* akan muncul:

	4	Paired	variaties:	1.1.1	23	Scener
🖉 hisai sematar 1 (M). 🖉 hisai semastar 2 (M).		Par 1	Naristie1	(retox)eS	1	Bootstun
	1				111	
	-				141	
	3 <u>8</u> -22					
					1	

Gambar 5.13 Kotak Dialog Paired-Samples T Test

Klik variabel **nilai semester_1** dan **nilai semester_2** secara berurutan dan pindahkan ke kotak *Variable*s dengan menekan tombol panah

Gambar 5.14 kotak dialog Paired-Samples T Test

Klik tombol **Option** sehingga kotak dialog *Paired-Sample T* **Test**: **Option** muncul. Tentukan rentang keyakinan (95%).

Missing Values	-45
Fxclude cases analysis by analysis	
Character and a set and yors by analysis	
◯ Exclude cases listwise	

Gambar 5.15 Kotak Dialog Paired-Samples T Test : Options

Klik tombol *Continue* sehingga kembali pada kotak dialog *Descriptives*. Klik tombol **OK** sehingga SPSS *View*er akan memunculkan *Output* tabel, yaitu:

			s Test						
		Paired Differences				t	df	Sig.	
Mean		Std.	Std.	95% Confidence				(2-tailed)	
			Devia	Error	Interval of the				
			tion	Mean	Differ	ence			
					Lower	Upper			
	Nilai								
	semste								
Dair 1	r 1 -	800	010	201	1 457	140	2 752	0	022
Pall I	Nilai	800	.919	.291	-1.457	143	-2.755	9	.022
	semest								
	er 2								

Uji hipotesis dilakukan untuk mengetahui ada tidaknya perbedaan rata-rata yang signifikan antara nilai semester 1 dan semester 2, dengan ketentuan bahwa jika terdapat perbedaan rata-rata nilai semester 1 dan semester 2 maka pengaruh penambahan jam pelajaran matematika terhadap peningkatan hasil belajar siswa.

Hipotesis nol yang akan diuji adalah

 $H_0: \mu_1 = \mu_2$ Atau "Tidak ada perbedaan rata-rata nilai matematika siswa sebelum dan sesudah ada penambahan jam pelajaran matematika"

Terdapat dua cara dalam pengujian hipotesis, yaitu: a. Menguji Nilai t $_{\rm hitung}$ terhadap t $_{\rm tabel}$

Dari **Output** di atas didapatkan nilai t_{hitung} = 2,753, dengan taraf signifikasi 5 % atau taraf kepercayaan 95%, maka besarnya angka batas penolakan hipotesis nol atau t_{tabel} adalah 2,262, sehingga nilai t_{hitung} > t_{tabel}, karena itu hipotesis nol ditolak, atau:

b. Menguji Nilai sig terhadap lpha

Nilai sig dari Output didapatkan 0,022, sedangkan nilai

 α = 0,05, sehingga Sig < α , maka H_O ditolak.

Kesimpulan yang diperoleh adalah "ada perbedaan rata-rata nilai matematika siswa sebelum dan sesudah ada penambahan jam pelajaran matematika", dengan demikian juga dapat disimpulkan bahwa ada pengaruh penambahan jam pelajaran matematika terhadap peningkatan hasil belajar siswa.

Latihan

Berikut data hasil *pre-test* dan *post-test* peserta didik kelas VIII MTs Ma'arif Hidayatullah Jombang, dengan menggunakan taraf signifikansi 5% lakukan pengujian:

1. Apakah rata-rata post-test sebesar 85!

2. Apakah ada peningkatan yang signifikan nilai antara *pretest* dan *post-test* !

No.	Nama	Pre-	Post-	No.	Nama	Pre-	Post-
		test	test			test	test
1	AIR	71	76	14	MP	71	76
2	AJ	67	72	15	MWA	82	85
3	ALF	58	69	16	MWAS	71	67
4	AS	54	75	17	MO	66	80
5	BSL	74	77	18	MJA	73	79
6	BM	59	68	19	PW	67	70
7	DM	74	80	20	РМ	57	78
8	DA	72	78	21	RW	66	75
9	EF	66	75	22	RP	74	65
10	FA	48	76	23	SK	78	90
11	KA	57	72	24	WD	57	65
12	LF	59	76	25	ΥK	57	78
13	LE	40	90				

Pembahasan pada Bab V menitikberatkan pada membandingkan rata-rata dua kelompok sampel atau populasi, kemudian dicari apakah terdapat perbedaan rata-rata secara signifikan atau tidak dengan menggunakan uji t. Pada uji t dengan sampel bebas hanya dapat digunakan apabila sampel yang kita bandingkan hanya terdiri dari dua kelompok saja, oleh karena itu pada kajian ini kan dibahas bagaimana membandingkan rata-rata dari dua kelompok sampel bebas atau lebih dengan menggunakan Analisis Varians (ANAVA). Asumsi awal data dari masing-masing kelompok harus homogen atau memiliki varians identik.

Diharapkan setelah mempelajari bab ini pembaca dapat:

- 1. Menjelaskan konsep analisis varians satu arah dan aplikasinya dengan SPSS
- 2. Menjelaskan konsep analisis varians dua arah dan aplikasinya dengan SPSS

A. Analisis Varians Satu Arah

Analisis varians satu arah dilakukan untuk mengetahui apakah terdapat perbedaan rata-rata secara signifikan atau tidak pada beberapa kelompok dengan satu faktor yang diberikan pada beberapa kelompok tersebut. Dalam analisis ini diasumsikan bahwa semua kelompok yang sedang dikaji memiliki keragaman atau varians sama.

Uji hipotesis kesamaan rata-rata dari analisis varians adalah :

$$H_0: \mu_1 = \mu_2 = \dots = \mu_a$$

$H_1: \mu_i \neq \mu_i$ paling sedikit satu pasang (i, j)

Tolak H_{0} jika

- nilai $F_{hitung} > F_{(\alpha,(a-1),(N-a))}$,
- nilai sig < α ,

Jika Tolak H_0 maka pengambilan kesimpulan menyatakan bahwa terdapat perbedaan rata-rata secara signifikan dari beberapa kelompok pupulasi atau sampel.

<u>Contoh</u>

Seorang insinyur meneliti tentang pengaruh persentase berat kapas terhadap kekuatan fiber sintetis yang dihasilkan. Dilakukan dalam lima level dan msing-masing diambil lima replikasi atau pengulangan. Data diperoleh seperti tabel di bawah ini:

Persentase Berat	Hasil observasi				
15	7	7	15	11	9
20	12	17	12	18	18
25	14	18	18	19	19
30	19	25	22	19	23
35	7	10	11	15	11

Tabel 6.1 Data kekuatan Kapas

Langkah berikutnya adalah menguji hipotesis, dimana:

$$H_0: \mu_1 = \mu_2 = \mu_3 = \mu_4 = \mu_5$$

Atau

 H_0 : tidak ada perbedaan rata-rata kekuatan fiber dari lima kelompok data tersebut atau tidak ada pengaruh persentase berat kapas terhadap kekuatan fiber yang dihasilkan. Langkah-langkah analisis dengan sebagai berikut:

Pada variabel View, definisikan:

Variabel 1Name: KekuatanType: Numeric, Decimal: 0, Width: 8,Label: kekuatan Fiber, measure : scale, adapun variabellain sesuai default program

Variabel 2

Name : persentase

Type : Numeric, Decimal: 0, Width: 8,

Label : persentase kapas, measure : scale, values : 1 = 15, 2 = 20,..., 5 = 35, adapun variabel lain sesuai *default* program pada values isikan masing-masing 1 = 15, 2 = 20,..., 5 = 35, klik ok.

Sehingga pada variabel View menjadi:

14			24 100		1 22	1.15
	Hama	Type	Wdth	Decimale	Label	1
1	losiciptas	Numeric	8	0	Keleratan Sher	None
2	prosentase	Nameric	*	0	Propertage Ka	s Finne
3	that Value La	bet			1	1
1				-		
÷	Value L	ili ela -				
0	Vene 1				60	-
1					-428	0000000
8	Licon					
9.		1 5 1157	ģ.			
10	62	2 * 20	9			
TI.	100	3=25	2			
12		4 = 30	i i			
	1.010	Time 0~ 30				

Gambar 6.1 Variable View dan Values Label

R

Masukkan data dalam data View

File Edit	View Data Tr	ransform Analyze
26 : prosent	ase	
	kekuatan	prosentase
1	7	1
2	7	1
3	15	1
4	11	1
5	9	1
6	12	2
7	17	2
8	12	2
9	18	2
10	18	2
11	14	3
12	18	3
13	18	3
14	19	3
15	19	3
16	19	4
17	25	4
18	22	4
19	19	4
20	23	4
21	7	5
22	10	5
	14	

Gambar 6.2 Data View

Untuk memulai anova, Klik Analyze \rightarrow Compare Means \rightarrow One-way Anova:

Pengolahan Data dengan SPSS $\mid 86$

Analyze	Direct Marketing	Graphs	Utilities	Add-ons	Window	Help
S Statistic <u>Analyze</u> Rep <u>u</u> D <u>o</u> ss Ta <u>b</u> l Co <u>m</u> <u>G</u> ens Gens Gens Gens Gens Uggl Logl Neu Clas Dim	s Data Editor Direct Marketing orts criptive Statistics es pare Means eral Linear Model eralized Linear Model d Models elate ression linear ral Networks ssify ension Reduction	Graphs	Utilities	Add- <u>o</u> ns	Window St st r Test	<u>H</u> elp
Dim Scal Non Fore Surv Multi Cor Qual	ension Reduction e parametric Tests icasting tval iple Response iing Value Analysis iple Imputation nplex Samples lity Control C Curve	4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4				

Gambar 6.3 Menu Analyze

Sehingga kotak dialog One-way Anova

Gambar 6.4 Kotak Dialog One Way ANOVA

Pindahkan *Variable* kekuatan fiber ke *dependent list*, dan persentase kapas ke factor,

	ggar oner (sar. Æ Kalsselar, HEar (soli	Contrasto. Postibios. Settore. Bentitae.
	ador. Ø Proskyttas Kapas start - Gancel - Lees	

Gambar 6.5 Kotak Dialog One Way ANOVA

Kemudian klik tombol post hoc, pilih tukey

G Die Wei ANOVA	7 of Hoc Alastic Cor	periors 1	-
EISEVULUE	una fini l		
ii 50 ii 90 ii 90 ii 90 ii 90 ii 60 ii 60 i 60 ii 60 ii 60 ii 60 ii 60 ii 60 ii 60 ii 60 ii 60 ii 60 i	C SNA M (200) C Tabyta-b C Santan C Santan C Satari	I Wate Decor Decelor Complete (g) Complete Complete (g) (Tell (Complete Complete (g)) (Tell (Complete Complete (g)) (g)	1.00
Essi tabetet El Taglinio D	er Annun Ad	Cognis Rovel Cognitis C	
Synthance level	Contras	Getose) (_files_)	

Gambar 6.6 Kotak Dialog One Way ANOVA :Post Hoc

Klik continue, kemudian klik ok, pada output muncul tabel :

ANOVA								
	Kekua	tan	fiber					
	Sum of Squares	Df	Mean Square	F	Sig.			
Between Groups	475.760	4	118.940	14.757	.000			
Within Groups	161.200	0	8.060					
Total	636.960	4						

Gambar 6.7 *Output* ANOVA

Pengolahan Data dengan SPSS $\mid 88$

Apabila $\alpha = 0,05$ didapatkan nilai $F_{0.05,4,20} = 2,87$ sehingga $F_{hitung} > F_{\alpha,\alpha-1,N-\alpha}$ menyababkan penolakan terhadap H_0 , selain itu juga jika nilai sig = 0,00 dan α = 0,05, sehingga nilai sig < α , maka H_0 ditolak. Dapat diambil kesimpulan bahwa ada perbedaan rata-rata kekuatan fiber dari lima kelompok data tersebut atau ada pengaruh persentase berat kapas terhadap kekuatan fiber yang dihasilkan. Jika demikian, maka pertanyaan berikutnya adalah pada persentase berapa saja yang berbeda?, oleh karena itu bisa dilihat dari *output* post hoc di bawah ini:

Multiple Comparisons							
Dependent	t Variable: I	Kekuatan fibe	er Tukey	HSD			
(I)	(J) Mear		C+d		95% Confidence Interval		
Persentas e Kapas	Persentas e Kapas	difference (I-J)	Error	Sig.	Lower Bound	Upper Bound	
	20	-5.600*	1.796	.039	-10.97	23	
15	25	-7.800*	1.796	.003	-13.17	-2.43	
10	30	-11.800*	1.796	.000	-17.17	-6.43	
	35	-1.000	1.796	.980	-6.37	4.37	
	15	5.600*	1.796	.039	.23	10.97	
20	25	-2.200	1.796	.737	-7.57	3.17	
20	30	-6.200*	1.796	.019	-11.57	83	
	35	4.600	1.796	.116	77	9.97	
	15	7.800*	1.796	.003	2.43	13.17	
25	20	2.200	1.796	.737	-3.17	7.57	
25	30	-4.000	1.796	.210	-9.37	1.37	
	35	6.800*	1.796	.009	1.43	12.17	
	15	11.800 [*]	1.796	.000	6.43	17.17	
30	20	6.200*	1.796	.019	.83	11.57	
30	25	4.000	1.796	.210	-1.37	9.37	
	35	10.800*	1.796	.000	5.43	16.17	
	15	1.000	1.796	.980	-4.37	6.37	
25	20	-4.600	1.796	.116	-9.97	.77	
55	25	-6.800*	1.796	.009	-12.17	-1.43	
	30	-10.800*	1.796	.000	-16.17	-5.43	
*. Th	e <i>Mean dif</i> j	<i>ference</i> is sigr	nificant at	the 0.05	level.		

Gambar 6.8 Multiple Comparisons Kekuatan fiber

R

Beberapa contoh untuk Analisis dari *Output* di atas adalah:

1. Untuk persentase kapas 15 (I) dengan persentase kapas 20 (J),

 $H_0: \mu_{15} = \mu_{20}$

Nilai sig = 0,039, sehingga sig < α , sehingga tolak H₀, artinya ada perbedaan rata-rata kekuatan fiber dari bahan dengan persentase kapas 15 (I) dengan persentase kapas 20 (J). Selain itu juga dapat dilihat dari tanda bintang (*) pada nilai *Mean difference* (I-J) yang berarti signifikan.

2. Untuk persentase kapas 15 (I) dengan persentase kapas 35 (J),

 $H_0: \mu_{15} = \mu_{35}$

nilai sig = 0,980, sehingga sig > α , sehingga terima H₀, artinya tidak perbedaan rata-rata kekuatan fiber dari bahan dengan persentase kapas 15 (I) dengan persentase kapas 35 (J). Selain itu juga dapat dilihat dari tidak ada tanda bintang (*) pada nilai *Mean difference* (I-J) yang berarti tidak signifikan perbedaan rata-ratanya.

	Kekuatan fiber						
Tukey HSD							
Dersontasa Kanas	Ν	Sub	set for a	lpha = 0	.05		
r ersentase Kapas		1	2	3	4		
15	5	9.80					
35	5	10.80	10.80				
20	5		15.40	15.40			
25	5			17.60	17.60		
30	5				21.60		
Sig980 .116 .737 .210							
Means for groups in ho	omo	ogeneou	is subset	s are dis	played.		
a. Uses Harmonic Mea	n S	ample Si	ze = 5.0	00.			

3. dan seterusnya.

Gambar 6.9 Tukey HSD

Dari output di atas dapat dijelaskan:

- 1. Untuk rata-rata kekuatan fiber antara persentase kapas 15% dan 35 % adalah sama.
- 2. Untuk rata-rata kekuatan fiber antara persentase kapas 35% dan 20 % adalah sama.
- 3. Tetapi untuk rata-rata kekuatan fiber antara persentase kapas 15% dan 20 % adalah berbeda.
- 4. dan seterusnya.

B. Analisis Varians Dua Arah

Seringkali dalam kehidupan sehari-hari variabel terikat atau respon tidak hanya dipengaruhi oleh satu variabel bebas, tetapi bisa jadi lebih dari satu variabel bebas, oleh karena itu dalam bahasan ini akan diuraikan tentang analisis varians dua arah. Dalam analisis varians dua arah terdapat dua faktor yang mempengaruhi hasil percobaan, dimana faktor pertama terdiri dari beberapa level (1, 2, ...a) demikian juga faktor ke dua juga terdiri dari beberapa level (1, 2, ..., b) dan dilakukan pengulangan sebanyak k.

Analisis varians dua arah memiliki tujuan untuk mengetahui apakah ada perbedaan rata-rata secara signifikan dari masingmasing kelompok data pada :

- 2. Faktor 1 pada tiap-tiap level
- 3. Faktor 2 pada tiap-tiap level, dan
- 4. Interaksi antara faktor 1 dan faktor 2 pada tiap level.

Asumsi dalam Analisis varians dua arah adalah sebagai berikut:

- 1. Eksperimen faktorial lengkap seimbang
- 2. Desain eksperimen acak lengkap, yaitu sampel acak bebas dari unit eksperimen dikaitkan pada perlakuan (*treatment*).
- 3. Populasi dari semua nilai yang memungkinkan dari variabel respons berkaitan dengan semua perlakuan terdistribusi secara normal.
- 4. Semua populasi tersebut memiliki varians yang sama (identik).

Uji hipotesis dilakukan terhadap kesamaan rata-rata dari masing-masing faktor, baik faktor A, faktor B maupun interaksi yang disebabkan oleh faktor A dan faktor B. Yaitu:

Faktor A

 $H_0: \tau_1 = \tau_2 = \dots = \tau_a$

 H_1 : paling sedikit satu $\tau_i \neq 0$

$$\begin{split} & H_0 \text{ ditolak jika } F_{hitung} > F_{\alpha,(a-1),ab(n-1)} \text{ atau jika nilai sig < \alpha } \\ & \text{Faktor B :} \\ & H_0: \beta_1 = \beta_2 = \ldots = \beta_b \\ & H_1: \text{paling sedikit satu } \beta_i \neq 0 \\ & H_0 \text{ ditolak jika } F_{hitung} > F_{\alpha,(b-1),ab(n-1)} \text{ atau jika nilai sig < \alpha } \\ & \text{Interaksi AB :} \\ & H_0: (\tau\beta)_{ij} = 0, \text{ untuk semua } i, j \end{split}$$

 H_1 : paling sedikit satu $(\tau\beta)_{ii} \neq 0$

 $H_0 \text{ ditolak jika } F_{hitung} > F_{\alpha,(a-1)(b-1),ab(n-1)} \text{ atau jika nilai sig < } \alpha$ Contoh:

Umur hidup baterai dalam sebuah penelitian didesain dengan tiga jenis bahan dan dioperasikan dalam tiga tingkatan suhu. Dengan taraf signifikasi 5%, tentukan faktor mana yang mempengaruhi umur baterai?

Data disajikan dalam tabel berikut:

	Suhu					
Bahan	15		15 70		11	25
1	130	155	34	40	20	70
T	74	180	80	75	82	58
n	150	188	136	122	25	70
Z	159	126	106	115	58	45
С	138	110	174	120	96	104
3	168	160	150	139	82	60

Tabel 6.2 Hasil penelitian

Pengolahan Data dengan SPSS $\mid 92$

Pada variabel *View*, definisikan:

Variabel 1

Name: umurType: Numeric, Decimal : 0, Width : 8,Label: umur baterai, measure : scale, adapun variabellain sesuai default program

Variabel 2

Name: Faktor_1Type: Numeric, Decimal : 0, Width : 8,Label: faktor bahan, measure : scale, values : 1 = bahan1, 2 = bahan 2, 3 = bahan 3, adapun variabel lain sesuaidefault program

1 Eatrie Poole Nerie 8 8 2 John Role Nerie 9 8 Selectation Vege	i i ing
Sala Labor Vida Labor Vida Labor Vida Labor	(Structure)
Neles Labora India Labora Vitar [] (See	(gana)
1964-1994 Ver [] (888	(Section)
Ver ((Spana))
Terra Contra Contra Contra	CONTRACT.
Parci	
TH DARKET	
() - Tabari	
- Committee -	

Gambar 6.10 Values Labels

Variabel 3 Name : Faktor_2 Type : Numeric, Decimal: 0, Width: 8,

Pengolahan Data dengan SPSS|93|

Label : faktor suhu, measure : scale, values : 1 = 15 1, 2 = 70 2, 3 = 125, adapun variabel lain sesuai *default* program.

tiane	3.00	Wates	Detanale	Laber.	
Ser.	Natorie	8	A	Since Hole al	New
Foksol, I	Waren	8	¥.	listeer station	(1.3)
Sec.3	New	85	ð	GATCH ANYM	Hate
ti vara		100			iner, ten
Valueta	els.	é		. Aller	ATT.
1244	-	1		1000	88 I I
[Laber]					
	34.00				
100	1.70				
1.01	11.00				
1.200	100				
1					
	(5	elli (Cere	R COLORED		
1	54	Den dens	a series		-

Gambar 6.11 Values Labels

Masukkan data sesuai dengan baris dan kolom, kemudian lakukan analisis:

Klik Analyze \rightarrow General liner model \rightarrow univariate, didapat kotak dialog:

Gambar 6.12 Menu Analyze

Pengolahan Data dengan SPSS $\mid 94$

Pindahkan variabel umur pada *dependent Variable*, dan variabel faktor bahan dan faktor suhu pada kotak *Factor*,

P-LABOURNESS	C BAC. MAR
Covanite(s)	geon Gagtante 1944 Postger Stare Gatare Boltane

Gambar 6.13 Kotak Dialog Univariate

Klik *post hoc*, masukkan Faktor_1 dan Faktor_2 ke kotak *post hoc test*, centang S-N-K dan Tukey, klik *continue*:

Entryn) Henryn Netry2	Partition Tanda Im Participation (and a second seco
Taxa mining wasted Date & Dealer Date D fearers Date D fearers Date D pears Date D pears Date D pears Date D pears Date D pears Date D pears	Digenser Ser Operation (der 1997) Diereiten (der 1997) Diereiten (der 1997) Ser Operation (der 1997) Hereiten (der 1997)
Contraction in Alberta Distances in Alberta Contraction (Contraction	E

Gambar 6.14 Kotak dialog Post Hoc

Klik option, pindahkan *overall* ke kotak *display mean for*, centang *homogeneity tes*, isikan .05 pada *signicance level*, klik *continue*,

Distric Quant for Contractor
Contraction of the second seco
Minimupanet task Specific task Specific task Specific task Specific task Specific task

Gambar 6.15 Kotak Dialog Univariate Option

Maka kembali ke kotak dialog univariate,

-	Desendent Variable Desendent Variable Desendent Variable Desendent Variable Desendent Variable	ut. Gerbasta
	P tothe bahan (Fait	er. Pola
	Rasson Fadatici	Star
	4	Bootstee.
	Qovanate(s)	
	WLSWeger	2

Gambar 6.16 Kotak Dialog Univariate

Klik ok. Didapatkan *output* sebagai berikut:

Levene's Test of Equality of Error Variances ^a					
Depende	ent <i>Variable</i> : U	lmur Baterai			
F	df1	df2	Sig.		
.902 8 27 .529					
Tests the null hypothesis that the error variance of the dependent <i>Variable</i> is equal across groups.					
a. Design: Inte faktor_2	ercept + Faktor	_1 + faktor_2	+ Faktor_1 *		

Gambar 6.17 Output Levene's Test of Equality of Error Variances

Levene's Test of Equality of Error Variances digunakan untuk menguji kesamaan error varians. Varians error dikatakan sama jika nilai nilai sig < α , sehingga dari **output** di atas dapat dikatakan Varians error dikatakan sama.

Tests of Between-Subjects Effects							
Dependent Variable: Umur Baterai							
Source	<i>Type</i> III Sum of	df	Mean	F	Sig.		
	Squares		Square				
Corrected	59416.222ª	8	7427.028	11.000	.000		
Model							
Intercept	400900.028	1	400900.028	593.739	.000		
Faktor_1	10683.722	2	5341.861	7.911	.002		
faktor_2	39118.722	2	19559.361	28.968	.000		
Faktor_1 *	9613.778	4	2403.444	3.560	.019		
faktor_2							
Error	18230.750	27	675.213				
Total	478547.000	36					
Corrected	77646.972	35					
Total							
a. R Squared = .765 (Adjusted R Squared = .696)							

Gambar 6.18 Output Tests of Between-Subjects Effects

Dengan menggunakan taraf signifikasi 5%, didapat $F_{0.05,2,27} = 3,35$ dan $F_{0.05,4,27} = 2,73$ maka dapat disimpulkan:

1. Untuk faktor bahan

 H_0 : tidak ada perbedaan rata-rata umur baterai dari bahan 1, 2 dan 3, atau faktor bahan tidak signifikan berpengaruh terhadap umur baterai. Di peroleh $F_{0.05,2,27} = 3,35$, dan $F_{hitung} = 7,91$ sehingga $F_{hitung} > F_{\alpha,(a-1),ab(n-1)}$, atau nilai sig = 0,002 dan α = 0,05 sehingga sig < α , maka H_0 ditolak, jadi dapat disimpulkan faktor bahan signifikan berpengaruh terhadap umur baterai.

2. Untuk faktor suhu

 H_0 : tidak ada perbedaan rata-rata umur baterai dari suhu 15°, 70° dan 175°, atau faktor suhu tidak signifikan berpengaruh terhadap umur baterai. Di peroleh $F_{0.05,2,27} = 3,35$, dan $F_{hitung} = 28,97$ sehingga $F_{hitung} > F_{\alpha,(b-1),ab(n-1)}$ atau nilai sig = 0,000 dan α = 0,05 sehingga sig < α , maka H_0 ditolak, jadi faktor suhu signifikan berpengaruh terhadap umur baterai.

3. Untuk faktor interaksi

Di peroleh $F_{0.05,4,27} = 2,73$, dan $F_{hitung} = 3,53$ sehingga $F_{hitung} > F_{\alpha,(a-1)(b-1),ab(n-1)}$ atau nilai sig = 0,019 dan α = 0,05 sehingga sig < α maka H_0 ditolak, sehingga faktor interaksi antara bahan dengan suhu signifikan berpengaruh terhadap umur baterai.

Dari uraian di atas dapat disimpulkan bahwa perubahan bahan, perubahan suhu dan interkasi antara perubahan bahan dengan perubahan suhu secara signifikan berpengaruh terhadap umur baterai. Untuk mengetahui perbedaan rata-rata umur baterai antar bahan dapat dilihat tabel berikut:

Multiple Comparisons								
Dependent <i>Variable</i> : Umur Baterai								
	(I) faktor	(J) faktor	Mean	Std.	Sig.	95% Confidence		
	bahan	bahan	difference	Error		Interval		
			(I-J)			Lower	Upper	
						Bound	Bound	
Tukey HSD	bahan 1	bahan 2	-25.17	10.608	.063	-51.47	1.14	
		bahan 3	-41.92 [*]	10.608	.001	-68.22	-15.61	
	hahan J	bahan 1	25.17	10.608	.063	-1.14	51.47	
	Danan Z	bahan 3	-16.75	10.608	.272	-43.05	9.55	
	bahan 3	bahan 1	41.92*	10.608	.001	15.61	68.22	
		bahan 2	16.75	10.608	.272	-9.55	43.05	
Based on observed means.								
The error term is Mean Square(Error) = 675.213.								
*. The <i>Mean difference</i> is significant at the .05 level.								

Gambar 6.19 Output Multiple Comparisons Factor Bahan

Contoh untuk Analisis dari **Output** di atas adalah:

1. Untuk bahan 1(I) dengan bahan 2(J),

 $H_0: \mu_1 = \mu_2$

Nilai sig = 0,063, sehingga sig > α , sehingga terima H₀, artinya tidak ada perbedaan rata-rata umur baterai antara bahan 1(I) dengan bahan 2 (J). Selain itu juga dapat dilihat dari tidak adanya tanda bintang (*) pada nilai *Mean difference* (I-J) yang berarti signifikan. 2. Untuk bahan 1(I) dengan bahan 3(J),

 $H_0: \mu_1 = \mu_3$

Nilai sig = 0,001, sehingga sig < α , sehingga tolak H₀, artinya ada perbedaan rata-rata umur baterai antara bahan 1(I) dengan bahan 3(J). Selain itu juga dapat dilihat dari adanya tanda bintang (*) pada nilai *Mean difference* (I-J) yang berarti signifikan. Sedangkan untuk mengetahui posisi perbedaan rata-rata umur baterai antar faktor suhu dapat dilihat tabel berikut:

Homogeneous Subsets

Umur Baterai							
	Faktor Suhu	Ν	Subset				
			1	2	3		
	125	12	64.17				
	70	12		107.58			
Student-Newman-Keuls ^{a,b}	15				14		
	15	2			4.83		
	Sig.		1.000	1.000	1.000		
	125	12	64.17				
	70	12		107.58			
Tukey HSD	15	12			144.83		
	Sig.		1.000	1.000	1.000		
Means for groups in homogen	eous subsets are d	display	ved.				
Based on observed means. Th	ne error term is Me	ean Sq	uare(Err	or) = 675.	213.		
a. Uses Harmonic Mean	Sample Size = 12.0	000.					
b. Alpha = .05.							

Gambar 6.20 Homogeneous Subsets Umur Baterai Factor Suhu

Untuk mengetahui perbedaan rata-rata umur baterai antar suhu dapat dilihat tabel berikut:

Multiple Comparisons								
Dependent Variable: Umur Baterai								
	I) faktor	J) faktor	Mean	Std.	Sig.	95% Confidence		
	suhu	suhu	differenc	Error		Interval		
			e (I-J)			Lower	Upper	
						Bound	Bound	
Tukey HSD	15	70	37.25 [*]	10.608	.004	10.95	63.55	
		125	80.67 [*]	10.608	.000	54.36	106.97	
	70	15	-37.25	10.608	.004	-63.55	-10.95	
		125	43.42	10.608	.001	17.11	69.72	
	125	15	-80.67*	10.608	.000	-106.97	-54.36	
		70	-43.42*	10.608	.001	-69.72	-17.11	
Based on observed means.								
The error term is Mean Square(Error) = 675.213.								
*. The Mean difference is significant at the .05 level.								

Gambar 6.21 Output Multiple Comparisons Factor Suhu

contoh analisis dari Gambar 6.20 adalah:

1. Untuk suhu 15(I) dengan suhu 70(J),

$H_0: \mu_{15} = \mu_{70}$

Nilai sig = 0,004, sehingga sig < α , sehingga tolak H₀, artinya ada perbedaan rata-rata umur baterai antara suhu 15(I) dengan suhu 70(J). Selain itu juga dapat dilihat dari adanya tanda bintang (*) pada nilai *Mean difference* (I-J) yang berarti signifikan.

2. Untuk suhu 15(I) dengan suhu 125(J),

$H_0: \mu_{15} = \mu_{125}$

Nilai sig = 0,000, sehingga sig < α , sehingga tolak H₀, artinya ada perbedaan rata-rata umur baterai antara suhu 15(I) dengan suhu 125(J). Selain itu juga dapat dilihat dari adanya tanda bintang (*) pada nilai *Mean difference* (I-J) yang berarti signifikan.

Sedangkan untuk rata-rata umur baterai antar faktor bahan dapat dilihat tabel berikut:

Umur Baterai						
	Faktor Bahan	Ν	Subset			
			1	2		
	bahan 1	12	83.17			
Student-Newman-	bahan 2	12		108.33		
Keuls ^{a,b}	bahan 3	12		125.08		
	Sig.		1.000	.126		
	bahan 1	12	83.17			
	bahan 2	12	108.33	108.33		
Tukey HSD	bahan 3	12		125.08		
	Sig.		.063	.272		
a. Uses Harmonic Mean Sample Size = 12.000.						
b. Alpha = .05.						

Homogeneous Subsets

Gambar 6.22 Homogeneous Subsets Umur Baterai Factor Bahan.

Homogeneous Subsets merupakan penjelasan terkait dengan apakah rata-rata kedua kelompok tersebut berbeda secara signifikan atau tidak. Apabila rata-rata dua kelompok berada pada kolom yang berbeda maka secara siginifikan nilai rata-rata dari kelompok tersebut berbeda. Misalnya pada faktor suhu (Gambar 6.20) rata-rata umur baterai pada suhu 15, 75, dan 125 berada pada kolom yang berbeda, ini berarti bahwa terdapat perbedaan yang signifikan umur baterai pada ketiga kondisi suhu tersebut.

Lain halnya dengan output *Homogeneous Subsets* pada Gambar 6.22, pada output tersebut dijelaskan bahwa pada faktor bahan terdapat rata-rata umur baterai dari bahan 2 dan bahan 3 terdapat pada kolom yang sama. Hal ini menunjukkan bahwa ratarata umur baterai dari bahan 2 dan bahan 3 tidak berbeda secara signifikan.

Penjelasan signifikansi perbedaan rata-rata secara visual dapat menggunakan output *homogeneous subsets,* namun untuk uji hipotesis tetap menggunakan output Anova dan multiple comparison.

Latihan

Berikut adalah data berkaitan dengan waktu olah raga dan pekerjaan, dengan taraf signifikansi 1%:

- a. Lakukan pengujian normalitas data waktu oleh raga!
- b. Lakukan pengujian homogenitas data dari masing masing pekerjaan!
- c. Apakah terdapat perbedaan rata-rata lama waktu olah raga antara yang bekerja sebagai PNS dan Wiaraswasta!
- d. Apakah terdapat perbedaan rata-rata lama waktu olah raga antara yang bekerja sebagai PNS dan BUMN!
- e. Apakah terdapat perbedaan rata-rata lama waktu olah raga antar pekerjaan!

Nama	Olah raga perminggu (jam)	Pekerjaan	Nama	Pekerjaan	Olah raga per- minggu (jam)
RUSDA	5.0	PNS	CONNY	BUMN	3.2
NINA	3.0	Wirswasta	MARY	PNS	3.5
LANNY	3.8	PNS	SUSY	Wirswasta	3.8
CITRA	5	PNS	USMAN	PNS	2
DINA	2.5	Wirswasta	SALIM	Wirswasta	2.5
SISKA	2.9	BUMN	JAMES	PNS	2.9
LUSI	3.5	PNS	JONI	PNS	3.5
LENNY	3.9	BUMN	JONO	BUMN	3.9
RUDI	3.4	BUMN	KRISTANTO	Wirswasta	3.4
ROBY	2.4	PNS	KARIM	Wirswasta	2.4
BAMBANG	3.0	Wirswasta	MELANI	Wirswasta	3.8
YUNUS	3	PNS	RUSMIN	BUMN	2
LESTARI	2.5	PNS	SULASTRI	Wirswasta	2.5
ERNI	3.1	BUMN	LILIANA	Wirswasta	2.1
ESTI	3.7	Wirswasta	PRIHARDI	BUMN	3.7
HANY	3.9	PNS			
HESTY	3.5	Wirswasta			
SUSAN	2.4	Wirswasta			
LILIS	3.7	BUMN			
LITA	3.9	PNS			

Kualifikasi Jabatan Fungsional dosen (asisten ahli dan lektor) dan pendidikan dosen (S2 dan S3) dinilai mempengaruhi hasil belajar mahasiswa, berikut hasil penelitan nilai 8 mahasiswa mata kuliah yang sama. Dengan menggunakan taraf signifikasi 5 %, apakah yang paling mempengaruhi nilai mahasiswa?

	S2	S3
Asiten ahli	80	90
	85	87
	90	89
	87	88
	88	89
	78	90
	89	96
	89	98
Lektor	98	89
	99	90
	87	99
	89	98
	84	78
	89	98
	90	90
	99	78

BAB VII KORELASI

Karl Pearson

(27 Maret 1857 – 27 April 1936) adalah kontributor utama perkembangan awal statistika hingga sebagai disiplin ilmu tersendiri. Ia mendirikan Departemen Statistika Terapan di University College London pada tahun 1911, menjadikannya sebagai jurusan statistika pertama kali di dunia untuk tingkat perguruan tinggi (http://id.wikipedia.org)

Beberapa variabel dalam penelitian secara teori seringkali menunjukan hubungan, tetapi sigknifikan atau tidaknya hubungan tersebut perlu dibuktikan secara statistik. Pada bab ini akan dibahas tentang konsep dan aplikasi korelasi dengan SPSS, dengan demikian setelah mempelajari bab ini pembaca diharapkan dapat:

- 1. Menjelaskan pengertian korelasi
- 2. Menjelaskan macam-macam korelasi
- 3. Menjelaskan korelasi *Product Moment* dan aplikasinya dengan SPSS
- 4. Menjelaskan korelasi *Spearmank Rank* dan aplikasinya dengan SPSS

A. Pengertian Korelasi

Korelasi berarti hubungan timbal balik, dua variabel dikatakan berkorelasi jika setiap perubahan yang terjadi pada variabel yang satu selalu diikuti dengan perubahan pada variabel yang lain, dimana pada masing-masing perubahan tersebut terjadi secara proposional.

Dua buah variabel yang mempunyai korelasi sering kali menunjukan adanya hubungan sebab akibat (kausal), maksudnya apabila perubahan variabel yang satu disebabkan karena pengaruh dari variabel yang lain, atau apabila perubahan variabel yang satu adalah akibat dari pengaruh variabel yang lain. Tetapi tidak semua korelasi menunjukan hubungan sebab akibat, tetapi setiap hubungan sebab akibat akan menunjukan korelasi.

Koefisien korelasi (r) adalah bilangan yang menunjukan besar kecilnyanya korelasi. Besarnya koefisien korelasi berkisar pada $-1 \le r \le 1$, apabila kita mendapatkan koefisien korelasi kurang dari -1 atau lebih dari 1, maka kita harus meninjau kembali perhitungan kita.

B. Macam-Macam Korelasi

1. Korelasi Negatif

Dua buah variabel dikatakan mempunyai arah korelasi yang negatif apabila perubahan pada variabel yang satu menunjukan arah yang berlawanan dengan perubahan pada variabel yang lain, dalam arti jika terjadi kenaikan dalam variabel yang satu maka variabel yang lain mengalami penurunan, dan sebaliknya, kisaran nilai koefisien korelasi negatif berada pada interval $-1 \le r < 0$,

Grafik di bawah ini menggambarkan korelasi negatif antara variabel X dan Y

Grafik 7.1. Grafik Korelasi Negatif

2. Korelasi Nol

Dua buah variabel dikatakan mempunyai arah korelasi nol apabila perubahan pada variabel yang satu menunjukan arah yang tidak beraturan, atau tidak berkorelasi.

Grafik 7.2. Grafik Korelasi Nol

3. Korelasi Positif

Dua buah variabel dikatakan mempunyai arah korelasi yang positif apabila perubahan pada variabel yang satu menunjukan arah yang sama dengan perubahan pada variabel yang lain. Kisaran nilai koefisien korelasi positif terletak pada interval $0 < r \leq 1$,

Grafik di bawah ini menggambarkan korelasi positif antara variabel X dan Y

Grafik 7.3 Korelasi Positif

Kisaran nilai korelasi

0,000-0,199	: sangat lemah
0,200–0,399	: lemah
0,400-0,599	: sedang
0,600-0,799	: kuat
0,800-1,000	: sangat kuat

4. Korelasi Product Moment

Teknik Korelasi *Product moment* dikembangkan oleh Karl Pearson, teknik ini digunakan untuk menentukan koefisien korelasi antara variabel interval dengan variabel interval lainnya. Jika terdapat dua variabel interval X dan Y, maka korelasi antara dua variabel tersebut dapat ditentukan dengan Persamaan:

Keterangan

= Koefisien korelasi
= Standar deviasi variabel X
= Standar deviasi variabel Y
= Rata-rata variabel x
= Rata-rata variabel y
= banyaknya individu dalam sampel = Angka mentah untuk variabel X = Angka mentah untuk variabel Y

Secara garis besar langkah-langkah yang ditempuh dalam pengujian hipotesis adalah :

- 1). Merumuskan hipotesis dan menentukan taraf signifikasi (lpha)
- 2). Memasukkan data ke dalam SPSS
- 3). Melakukan analisis
- 4). Uji hipotesis

a. Menguji Nilai r_{hitung} terhadap r_{tabel} Aturan untuk pengujian nilai r_{hitung} dengan r_{tabel} adalah :

- Apabila $r_{hitung} \ge r_{tabel}$ maka H_O ditolak
 - Apabila $r_{hitung} < r_{tabel}$ maka H_0 diterima
- b. Menguji Nilai sig terhadap lpha

- Jika Sig > α , maka H_0 diterima.
- Jika Sig $\leq \alpha$, maka H_0 ditolak.

5). Menarik kesimpulan

Penarikan kesimpulan dapat dilakukan dengan membaca nilai r dan menghubungkan dengan kisaran nilai r, apakah termasuk dalam korelasi kuat, lemah, atau yang lain. Selain itu juga dengan menguji signifikansi koefisien korelasi denga r tabel atau sig dengan alfa.

Contoh

Seorang pimpinan sekolah mengadakan suatu penelitian untuk mengetahui ada tidaknya hubungan antara rata-rata waktu belajar per minggu terhadap prestasi belajar matematika di Sekolah Dasar. dengan menggunakan taraf signifikasi 5%, apakah terdapat hubungan antara rata-rata waktu belajar perminggu terhadap hasil belajar matematika di Sekolah Dasar. diperoleh data sebagai berikut :

Subyek	Nilai (X)	Rata-rata Waktu belajar dalam jam (Y)
1	89	7
2	90	8
3	75	6
4	78	7
5	85	6
6	86	6
7	98	9
8	67	6
9	78	4
10	85	4

Tabel 7.1 Data perolehan Nilai Raport dan waktu belajar

Langkah-langkah analisis dengan sebagai berikut:

Pada variabel *View*, definisikan:

Variabel 1

Name: NilaiType: Numeric, Decimal: 0, Width: 8,Label: nilai ulangan, measure : scale, adapun variabellain sesuai default program

Variabel 2

Name: waktuType: Numeric, Decimal: 0, Width: 8,Label: lama belajar, measure : scale, adapun variabellain sesuai default program

Sehingga pada variabel View menjadi:

Ele OH	jeer Dee	. Danation	ARM DIS	-	Quere Lines	in heland i	Geola the	52		
0.	1 4 1	Q 11~	× 聞	高頭	的關	1	心冊	調査	0 m	
1	14416	Tide -	-Way	Desiral	-Label	1.41.99	Annung	Q-bran	Nan	Measur
1.1.	We .	Herard		1	Title Dolain	10m	Acres .		I Cetter	# Sile
-	West.	Heruti	1	*	Vieta Beinge	3100	600	*	e Cella	a# 91.64

Gambar 7.1 Variable View

Kemudian klik data *View*, masukkan data. Untuk peoses analisis klik *Analyze* \rightarrow *Correlate* \rightarrow *Bivariate*,

Gambar 7.2 Menu Analyze

g finansie Covelakara		and an
/ Nov Dogar Bast / Harls Dogar Martin	Yanaker.	(getore) getorie_)
Commission Confidences References [1] Sand Michael	t 🗆 (seama)	
Terror High Cance - Stronballed CO Con-tagled		
Eug syntract answers	(Beat) Caxe)	ww.

Muncul Kotak dialog Bivariate Correlation:

Gambar 7.3 Kotak Dialog Bivariate Correlation

Masukkan variabel Nilai belajar dan waktu belajar ke kotak variabel, centang *Pearson*, pilih *two tiled*, klik ok, didapatkan *output*:

Correlations							
		Nilai Belajar	Waktu Belajar				
Nilai Belajar	Pearson Correlation	1	.529				
	Sig. (2-tailed)		.116				
	N	10	10				
	Pearson Correlation	.529	1				
Waktu Belajar	Sig. (2-tailed)	.116					
	Ν	10	10				

Gambar 7.4 Output Pearson Correlation

Uji hipotesis

 $H_0: r_{xy} = 0$, atau:

Tidak terdapat hubungan/korelasi antara rata-rata waktu belajar perminggu terhadap prestasi belajar matematika di Sekolah Dasar. Terdapat dua cara dalam pengujian hipotesis, yaitu:

R

a. Menguji Nilai r_{hitung} terhadap r_{tabel}

Dari *output* di atas didapatkan nilai $r_{hitung} = 0,529$, dengan taraf signifikasi 5 % atau taraf kepercayaan 95%, r_{tabel} adalah 0,632, sehingga nilai $r_{hitung} < r_{tabel}$, karena itu hipotesis nol diterima, atau:

b. Menguji Nilai *sig* terhadap lpha

Nilai sig dari output didapatkan 0,116, sedangkan nilai

 α = 0,05, sehingga *Sig* > α , maka H_0 diterima. Kesimpulan yang dapat diambil adalah tidak terdapat hubungan antara rata-rata waktu belajar perminggu terhadap prestasi belajar matematika di Sekolah Dasar.

5. Korelasi Spearmank Rank

a. Pengertian

Uji korelasi *Rank Order* dikembangkan oleh Charles *Spearman*. teknik ini digunakan untuk mencari koefisien korelasi antara variabel ordinal dengan variabel ordinal lainnya.

Teknik korelasi ini dapat digunakan dalam dua jenis kejadian, yaitu :

- 1. Apabila data yang kita peroleh data ordinal, dengan syarat jumlah data tidak kurang dari lima dan tidak lebih dari tigapuluh.
- 2. Apabila data yang diperoleh berupa data interval, maka pengubahan data menjadi data ordinal dimungkinkan dengan sayarat jumlah data tidak kurang dari lima dan tidak lebih dari tigapuluh. Tetapi bila lebih dari tigapuluh maka teknik ini tidak dapat digunakan tetapi teknik *Product moment* yang dipakai.

(Netra, 1974)

b. Rumus

$$rho = 1 - \frac{6\sum d^2}{N(N^2 - 1)}$$
(7.2)

Keterangan :

Pengolahan Data dengan SPSS | 112

rho= Koefisien korelasi Rank Order

- 1 = bilangan konstan
- 6 = bilangan konstan
- d = perbedaan antara pasangan jenjang
- N = Banyaknya sampel

Secara umum garis besar langkah-langkah yang ditempuh dalam pengujian hipotesis adalah :

- 1). Merumuskan hipotesis dan menentukan taraf signifikasi (lpha)
- 2). Memasukkan data ke dalam SPSS
- 3). Melakukan analisis
- 4). Uji hipotesis
- a. Menguji Nilai *rho*_{hitung} terhadap *rho*_{tabel}

Aturan untuk pengujian nilai rho_{hitung} dengan rho_{tabel} adalah :

Apabila $rho_{hitung} \ge rho_{tabel}$ maka H₀ ditolak

- Apabila $rho_{hitung} < rho_{tabel}$ maka H₀ diterima
- b. Menguji Nilai *sig* terhadap
 - Jika $Sig > \alpha$, maka H₀ diterima.
 - Jika $Sig \leq \alpha$, maka H₀ ditolak

<u>Contoh</u>

Seorang guru sekolah menengah mengadakan suatu penyelidikan untuk mengetahui ada tidaknya hubungan antara nilai mata pelajaran mtematika dengan mata pelajaran akuntansi pada kelas X. dengan menggunakan taraf signifikasi 5%, apakah terdapat hubungan antara peringkat nilai matematika dan peringkat nilai akuntansi di Sekolah menengah?

Data yang digunakan adalah data berupa *Rank*ing pada kedua mata pelajaran tersebut. Didapatkan data sebagai berikut:

Tabel 7.4 Nilai mata pelajaran mtematika dengan mata pelajaran akuntansi

Langkah-langkah analisis dengan sebagai berikut:

Pada variabel View, definisikan:

Variabel 1

Name : peringkat_1

Type : Numeric, Decimal: 0, Width: 8,

Label : peringkat nilai matematika, *measure* : *scale*, adapun variabel lain sesuai *default program*

Variabel 2

Name : peringkat_2

Type : Numeric, Decimal: 0, Width: 8,

Label : peringkat nilai akuntansi, measure : scale, adapun variabel lain

sesuai default program A varie order sev (Detailer) 200 000 Damarica Data Lance En Edt few fats fractions water Developments fracts unlines stores white Heat Columns West. Decimals Maring Test Label Values đ Pringlar_1 /larmic periodal nilat ... -18 Trans Marine ×. z Peringkat 1 Viewwe 1 a peringkat milaria. None None 3

Gambar 7.5 Variable View

Pengolahan Data dengan SPSS $\mid 114$

Kemudian klik data *View*, masukkan data. Untuk peoses analisis klik *Analyze* \rightarrow *Correlate* \rightarrow *Bivariate*,

Muncul Kotak dialog *Bivariate Correlation*:

		Variables: Ø peringkat nilai mate Ø peringkat nilai akunt	Options
Correlation Coefficients	s tau-b 🗸	Spearman	
Test of Significance <u>T</u> wo-tailed O One-tailed	ailed		

Gambar 7.6 Kotak Dialog Bivariate Correlation

Masukkan variabel peringkat nilai matematika dan peringkat nilai akuntansi ke kotak variabel, centang *Spearman*, pilih *two tiled*, klik ok, didapatkan *output*:

	Correlations						
			peringkat nilai	peringkat nilai			
			matematika,	akuntansi,			
		Correlation	1 000	903**			
	peringkat nilai matematika,	Coefficient	1.000	.505			
Spoor		Sig. (2-tailed)		.000			
speur		Ν	10	10			
rho	peringkat nilai akuntansi,	Correlation	903**	1 000			
IIIO		Coefficient	.905	1.000			
		Sig. (2-tailed)	.000				
		Ν	10	10			
*	**. Correlation is significant at the 0.01 level (2-tailed).						

 $H_0: \rho = 0$ atau: Tidak terdapat hubungan antara peringkat nilai matematika dan peringkat nilai akuntansi di Sekolah menengah.

Terdapat dua cara dalam pengujian hipotesis, yaitu: a. Menguji Nilai $rho_{\rm hitung}$ terhadap $rho_{\rm tabel}$

dari *output* di atas didapatkan nilai $rho_{hitung} = 0,903$, dengan taraf signifikasi 5 % atau taraf kepercayaan 95%, rhotabel adalah 0,648, sehingga nilai $rho_{hitung} > rho_{tabel}$, karena itu hipotesis nol ditolak, atau:

b. Menguji Nilai sig terhadap

nilai *sig* dari *output* didapatkan 0,000, sedangkan nilai = 0,05, sehingga *Sig* < , maka ditolak.

Kesimpulan yang dapat diambil adalah terdapat hubungan yang sangat kuat antara peringkat nilai matematika dan peringkat nilai akuntansi di Sekolah menengah.

BAB VIII REGRESI LINIER SEDERHANA

Francis Galton

Sir Francis Galton pada tahun 1877 melakukan penelitiannya pada pengaruh tinggi manusia, yaitu antara tinggi anak dan tinggi orang tuanya dalam artikel yang berjudul *Regression Towards Mediocrity In Hereditary Stature*. Pada penelitiannya Galton mendapatkan bahwa tinggi anak dari orang tua yang tinggi cenderung meningkat atau menurun dari berat rata-rata populasi. Garis yang menunjukkan hubungan tersebut disebut garis regresi (http://id.wikipedia.org)

Pembahasan tentang korelasi dua variabel atau lebih hanya menggambarkan tingkat hubungan dari variabel tersebut tanpa mempermasalahkan mana variabel yang dipengaruhi (terikat) dan yang mempengaruhi (bebas). Dalam kajian regresi linier tidak hanya mengkaji korelasi antar dua variabel atau lebih, namun juga mendefinisikan dengan jelas suatu variabel bebas dan terikatnya.

Setelahh mempelajari bab ini diharapkan pembaca dapat:

- 1. Menjelaskan pengertian Regresi
- 2. Menentukan model regresi dengan SPSS
- 3. Menguji parameter regresi dengan SPSS
- 4. Menentukan nilai koefisien determinasi dengan SPSS
- 5. Menguji asumsi regresi dengan SPSS.

A. Pengertian Regresi

Metode regresi yang merupakan metode yang memodelkan hubungan antara variabel respon (y) dan variabel prediktor (x_1 , x_2 , ..., x_p). Istilah regresi pertamakali dikenalkan oleh Francis Galton (1886) dalam artikel yang berjudul *Regression Towards Mediocrity In Hereditary Stature*, di dalam artikel ini mengkaji hubungan antara tinggi badan anak dengan tinggi badan orang tua. Dari hasil kajian ini diperoleh informasi adanya hubungan antara tinggi badan anak dengan tinggi orangtuanya.

Model regresi linier secara umum dinyatakan dengan:

$$y = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + ... + \beta_p x_p + \varepsilon$$
 (8.1)

Jika diambil sebanyak *n* pengamatan, maka model di atas dapat ditulis sebagai:

$$y_i = \beta_0 + \sum_{k=1}^{p} \beta_k x_{ik} + \varepsilon_i \quad (8.2)$$

Dengan *i* = 1, 2, ..., *n*; β_0 , β_1 ,..., β_p adalah parameter model dan ε_1 , ε_2 ,..., ε_n adalah error yang diasumsikan identik, independen, dan berdistribusi normal dengan mean nol dan varians konstan σ^2 [1]. Jika dituliskan dalam notasi matriks maka model (8.2) menjadi:

$$\mathbf{y} = \mathbf{X}\boldsymbol{\beta} + \boldsymbol{\varepsilon} \tag{8.3}$$

B. Penentuan Model Regresi

Penentuan model regresi dilakukan dengan melakukan estimasi parameter regresi $\boldsymbol{\beta}$ seperti pada persamaan 8.1. Estimator dari parameter model didapat dengan meminimumkan jumlah kuadrat error atau yang dikenal dengan *Ordinary Least Square* (OLS), yaitu:

$$\hat{\boldsymbol{\beta}} = \left(\mathbf{X}^T \mathbf{X} \right)^{-1} \mathbf{X}^T \mathbf{y}$$
 (8.4)

dengan

 β : vektor dari parameter yang ditaksir berukuran nx(p+1)X: matrik data berukuran $n \ge (p+1)$ dari variabel bebas yang elemen pada kolom pertama bernilai 1

Y : vektor observasi dari variabel respon berukuran (nx 1)

 $\mathbf{\epsilon}$: vektor error yang berukuran (*n* x 1)

k: banyaknya variabel bebas (k = 1, 2, ..., p)

C. Pengujian Parameter Regresi

Setelah dilakukan estimasi parameter regresi, maka didapatkan model regresi, tetapi parameter regresi yang didapatkan perlu diuji signifikasinya pada model tersebut.

pengujian parameter regresi dilakukan dengan pengujian Koefisien regresi

Dalam pengujian parameter dilakukan secara serentak (*overall*) dan individu (*partial*).

1. Pengujian Parameter Secara Serentak (Overall)

Pengujian Koefisien regresi diuji secara serentak dengan menggunakan teknik ANOVA, yang bertujuan untuk mengetahui apakah variabel bebas secara bersama-sama mempunyai pengaruh yang signifikan terhadap variabel terikat.

Hipotesis dari pengujian parameter secara serentak adalah : H₀: $\beta_1 = \beta_2 = ... = \beta_n = 0$

 H_1 : minimal terdapat satu $\beta_k \neq 0$, k = 1, 2, 3, ..., p

p merupakan banyaknya parameter yang terdapat di dalam model regresi.

Secara matrik dekomposisi jumlah kuadrat total dari residual dapat dinyatakan sebagai berikut:

Tabel 8.1 Analisis Varians

Sumber Variasi	Deraja t bebas	Jumlah kuadrat	Rata-rata kuadrat (RK)	F
Regresi	Р	$\sum_{i=1}^{n} \left(y_i - y_i \right)^2$	$\frac{\sum_{i=1}^{n} (y_i - y_i)^2}{p}$	$F = \frac{\text{RK Regress}}{\text{RK Residual}}$
Residual	n-p-1	$\sum_{i=1}^{n} \left(y_i - y_i \right)$	$\frac{1}{2} \frac{\sum_{i=1}^{n} (y_i - y_i)^2}{(n - p - 1)}$	
Total	n - 1	$\sum_{i=1}^{n} \left(y_i - \overline{y}_i \right)$	2	

Jika pengujian dengan menggunakan taraf signifikasi $\alpha,$ maka H_0 ditolak jika:

- 1. $F_{\text{Hitung}} > F_{\alpha(v_1,v_2)}$, $v_1 = p \text{ dan } v_2 = n p 1$
- 2. P-value atau $\operatorname{sig} < \alpha$
- 2. Pengujian parameter secara individu (partial).

Pengujian parameter secara individu digunakan untuk menguji apakah nilai setiap koefisien regresi mempunyai pengaruh yang signifikan.

Hipotesis dari pengujian secara individu adalah:

 $H_0: \beta = 0$, Atau variabel bebas ke --i tidak signifikan

 $H_1: \beta \neq 0, i = 1, 2, 3, ..., p$

Statistik uji yang digunakan adalah :

$$t_{hang} = \frac{\beta_i}{\sqrt{stdev(\beta_i)}} \tag{8.5}$$

Pengolahan Data dengan SPSS $\mid 120$

Tolak H₀ jika: 1. $t_{Hitung} > t_{(\alpha/2,n-k)}$, 2. P-value atau $sig < \alpha$

3. Koefisien Determinasi (KD)

Koefisien determinasi adalah nilai yang digunakan untuk mengetahui seberapa besar variabel bebas dalam memberi kontribusi terhadap variabel terikat, ditentukan dengan rumus:

$$KD = R^{2} \times 100\%, \text{ dimana } R^{2} = \frac{\sum_{i=1}^{n} (y_{i} - \overline{y}_{i})^{2}}{\sum_{i=1}^{n} (y_{i} - \overline{y}_{i})^{2}}$$
(8.6)
$$KD = \frac{\sum_{i=1}^{n} (y_{i} - \overline{y}_{i})^{2}}{\sum_{i=1}^{n} (y_{i} - \overline{y}_{i})^{2}} \times 100\%$$

D. Kriteria Pemilihan Model Terbaik

Salah satu tujuan analisis regresi adalah mendapatkan model rgeresi yang terbaik, dimana model tersebut mampu menjelaskan hubungan antara variabel *bebas* dengan variabel terikat, model terbaik adalah model yang seluruh koefisien regresinya berarti (*significant*) dan mempunyai kriteria model terbaik optimum.

Kriteria model regresi terbaik ditunjukkan dalam tabel berikut:

Tabel 8.2	Kriteria	Model	terbaik

No	Kriteria	Rumus	Optimum
I	JKR (SSE)	$\sum_{i=1}^{n} \left(\mathcal{Y}_{i} - \mathcal{Y}_{i} \right)^{2}$	Minimum
2	RSR (MSB)	$\frac{\sum_{i=1}^{n} \left(y_i - y_i\right)^2}{n - p - 1}$	Minimum
3	R ²	$\frac{\sum_{i=1}^{n} \left(y_{i} - \overline{y}_{i}\right)^{2}}{\sum_{i=1}^{n} \left(y_{i} - \overline{y}_{i}\right)^{2}}$	Maksimum
4	Adjusted R ²	$1-(1-R^2)\frac{(n-1)}{(n-p)}$	Maksimum
5	C ₇ Mallow	$\frac{SSE}{MSE} - (n - 2p)$	Minimum
6	AIC	$\ln\left(\frac{SSE}{n}\right) + \frac{2p}{n}$	Minimum
7	SBC	$\ln\left(\frac{SSE}{n}\right) + \frac{p}{n}\ln(n)$	Minimum

IVIJL	. Mean Square Litor
JKR	: Jumlah kuadrat Residual

- RKR : rata-rata kuadrat Residual
- AIC : Akaike Information Criterion
- SBC : Schwartz Bayesian Criterion

Kriteria di atas digunakan apabila kita menginginkan model terbaik dengan berbagai metode sehingga memunculkan beberapa model sebgai pilihan.

E. Metode Pemilihan Model Terbaik

1. Enter

Prosedur dalam metode ini adalah memasukkan semua variabel bebas, baik yang signifikan maupun tidak.

2. Backward

Prosedur dalam metode ini adalah mulai dengan model lengkap, kemudian variabel bebas yang ada dievaluasi, jika ada yang tidak signifikan dikeluarkan yang paling tidak signifikan, langkah ini dilakukan terus sampai tidak ada lagi variabel bebas yang tidak signifikan.

3. Forward

Langkah pertama yang dilakukan adalah menentukan nilai korelasi dari masing-masing variabel bebas dengan variabel terikat (korelasi parsial). Kemudian Variabel bebas yang pertama kali masuk ke dalam model adalah variabel yang mempunyai korelasi tertinggi dan signifikan, variabel yang masuk kedua adalah variabel yang korelasinya adalah tertinggi kedua dan masih signifikan, dilakukan terus menerus sampai tidak ada lagi variabel bebas yang signifikan.

4. Stepwise

Metode ini merupakan perpaduan antara metode *forward* dan *backward*. Langkah pertama yang dilakukan adalah menentukan nilai korelasi dari masing-masing variabel bebas dengan variabel terikat. variabel yang pertama kali masuk adalah variabel yang korelasinya tertinggi dan signifikan, variabel yang masuk kedua adalah variabel yang korelasi parsialnya tertinggi dan masih signifikan, setelah variabel tertentu masuk ke dalam model maka variabel lain yang ada di dalam model dievaluasi, jika ada variabel yang tidak signifikan maka variabel tersebut dikeluarkan.

F. Contoh Permasalahan

Seorang guru mengadakan suatu penelitian untuk mengetahui pengaruh antara rata-rata waktu belajar perminggu, kedisiplinan, dan skor IQ (yang diukur di saat siswa baru) terhadap hasil belajar

matematika di Sekolah menengah. Dari data di bawah dengan menggunakan taraf signifikasi 5%, tentukan model regresi dan jelaskan hubungan berdasarkan model yang terbentuk.

Subvok	Nilai (V)	Rata-rata Waktu	Kedisiplinan	Skor IQ
Subyer	inital (T)	belajar dalam jam (X ₁)	(X ₂)	(X ₃)
1	89	7	75	105
2	90	8	80	103
3	75	6	70	100
4	78	7	75	110
5	85	6	80	103
6	86	6	85	103
7	98	9	85	104
8	67	6	70	108
9	78	4	85	110
10	85	4	85	105

Tabel 8.3 Data perolehan Nilai dan waktu belajar

Langkah-langkah analisis dengan sebagai berikut:

Pada variabel View, definisikan:

Variabel 1

Name : Y

Type : Numeric, Decimal: 0, Width: 8,

Label : nilai ulangan, *measure : scale*, adapun variabel lain sesuai *default* program

Variabel 2

Name	:X1

Type : Numeric, Decimal: 0, Width: 8,

Label : lama belajar, *measure* : *scale*, adapun variabel lain sesuai *default* program

Variabel 3

Name	:X2	
-		

Type : Numeric, Decimal: 0, Width: 8,

Label : kedisiplinan, *measure : scale*, adapun variabel lain sesuai *default program*

Variabel 4 Name : X3 Type : Numeric, Decimal: 0, Width: 8, Label : skor IQ, measure : scale, adapun variabel lain sesuai default program

langkah-langkah Analisis dengan SPSS sebagai berikut: klik Analyze \rightarrow Regression \rightarrow Linier

Gambar 8.1 Menu Analyze

Didapatkan kotak dialog *Linear Regression*, masukkan Nilai Belajar ke kotak *Dependent*, Waktu belajar, kedisiplinan dan skor IQ ke kotak *Independent*. Sebagai contoh pilih metode *Enter*, kemudian klik *Statistics*,

IIP Waktu Belajar [X1] IIP Kedisiplinan [X3] IIP Skor IQ [X4]	Dependent Nilai Belajar [Y] Block 1 of 1 Previous Independent(s): Waktu Belajar [X1] Kedisiplinan [X3] Skor IQ [X4]	Statistics. Plots Save Options Bootstrap
	Method: Stepwise Selection Variable: Case Labels: WLS Weight	

Gambar 8.2 Kotak Dialog Linear Regression

Kemudian klik *Statistics*, aktifkan *Estimates* untuk estimasi parameter regresi, *confidence intervals* level = 95% (alfa = 5%), *model fit* dan R *Square change*.

Regression Coefficients	Model fit
Confidence intervals	Descriptives
Level(%): 95	Part and partial correlations
Covariance matrix	Collinearity diagnostics
Residuals	
Durbin-Watson	
Casewise diagnostic:	F
<u>O</u> utliers outside:	3 standard deviations
⊕ ∆i cases	

Gambar 8.3 Kotak Dialog Statistics

Klik *continue*; akan kembali ke kotak dialog *linear regression*. Kemudian klik *option*, muncul kotak dialog:

a sector a s	Method	Criteria
🖲 Use p	robabilit	y of F
Entry:	.05	Removal: 10
🛛 Use F	value	
Entry.	3.84	Remongt: [2.74
Missing (Exclu	Values de cases	s listwise
O Exclu	de cases	spairwise

Gambar 8.4 Options

Aktifkan *Include constant in equation* untuk mendapatkan nilai konstan (β_0) dalam model, klik Ok didapatkan *Output*:

Variables Entered/Removed ^a						
Model	Variables Entered	Variables	Method			
		Removed				
	Skor IQ,					
1	Kedisiplinan,		Enter			
	Waktu Belajar ^b					
a. Dependent <i>Variable</i> : Nilai Belajar						
b. All re	equested Variables e	entered.				

Gambar 8.5 Output Variables Entered/Removed

Output di atas digunakan untuk metode yang digunakan, yaitu metode *enter*.

Model Summary							
Model	R	R Square	Adjusted R	Std. Error of the			
			Square	Estimate			
1	.924ª	.854	.782	4.112			
a. Pr	a. Predictors: (Constant), Skor IQ, Kedisiplinan, Waktu Belajar						

Gambar 8.6 Model Summary

Output di atas digunakan untuk menentukan koefisien determinasi dengan nilai R Square = 0,854, sehingga diperoleh KD = 85,4 %, artinya sebesar 85,4 % faktor yang mempengaruhi Nilai Belajar adalah Waktu Belajar, Kedisiplinan, dan Skor IQ, , sedangkan 14,6 % dipengaruhi faktor lain di luar model.

	ANOVAª						
Model		Sum of	df	Mean Square	F	Sig.	
		Squares					
	Regression	595.450	3	198.483	11.739	.006 ^b	
1	Residual	101.450	6	16.908			
	Total	696.900	9				
a.	Dependent V	ariable: Nilai	Belaja	r			
b.	b. Predictors: (Constant), Skor IO, Kedisiplinan, Waktu Belaiar						

Gambar 8.7 Output ANOVA

Output di atas digunakan untuk uji signifikasi parameter secara serentak, dengan hipotesis :

 $H_0: \mathcal{B}_1 = \mathcal{B}_2 = \mathcal{B}_3 = 0$ Atau :

Waktu Belajar, Kedisiplinan, dan Skor IQ, tidak signifikan mempengaruhi Nilai Belajar

 H_1 : minimal terdapat satu $\beta_k \neq 0$, k = 1, 2, 3

Diperoleh nilai sig = 0,006, hal ini berarti $sig < \alpha$, sehingga H₀ ditolak. Dengan demikian secara bersama-sama signifikan Waktu Belajar, Kedisiplinan, dan Skor IQ, mempengaruhi Nilai Belajar.

	Coefficients ^a							
Model		Unstandardized		Standardized	t	Sig.		
		Coeffic	icients Coefficients					
		В	Std. Error	Beta				
	(Constant)	50.956	50.971		1.000	.356		
1	Waktu Belajar	3.167	.916	.564	3.459	.013		
T	Kedisiplinan	1.038	.225	.725	4.611	.004		
	Skor IQ	664	.433	248	- 1.533	.176		
	a. Dependent <i>Variable</i> : Nilai Belajar							

Gambar 8.8 Output Coefficients

Output di atas digunakan untuk mendapatkan model regresi, yaitu :

 $y = 50,956 + 3,167x_1 + 1,036x_2 - 0,664x_3$

Selain itu *Output* di atas juga digunakan untuk uji signifikasi parameter secara individu, dengan hipotesis :

1. Variabel Waktu belajar

 $H_0: \beta_1 = 0$, atau

Variabel waktu belajar tidak signifikan mempengaruhi nilai belajar.

 $H_1: \beta_1 \neq 0$, atau

Variabel waktu belajar signifikan mempengaruhi nilai belajar.

Diperoleh nilai *sig*= 0,013, hal ini berarti *sig*< α , sehingga H₀ ditolak. Dengan demikian variabel waktu belajar signifikan mempengaruhi nilai belajar.

2. Variabel Kedisiplinan

H₀ : $\beta_2 = 0$, atau variabel Kedisiplinan tidak signifikan mempengaruhi nilai belajar.

 ${\rm H_1}:\ \beta_2 \neq 0, \ {\rm atau} \ {\rm variabel} \ {\rm Kedisiplinan} \ {\rm signifikan} \ {\rm mempengaruhi} \ {\rm nilai} \ {\rm belajar}.$

Pengolahan Data dengan SPSS $\mid 129$

Diperoleh nilai sig = 0,004, hal ini berarti $sig < \alpha$, sehingga H₀ ditolak. Dengan demikian variabel Kedisiplinan signifikan mempengaruhi nilai belajar.

3. Variabel skor IQ

 $H_{\scriptscriptstyle 0}$: $eta_{\scriptscriptstyle 3}=0$, Atau

variabel skor IQ tidak signifikan mempengaruhi nilai belajar.

 $\mathsf{H}_{\scriptscriptstyle 1}\colon \beta_{\scriptscriptstyle 3} \,
eq 0$, Atau

variabel skor IQ signifikan mempengaruhi nilai belajar.

Diperoleh nilai sig = 0,176, hal ini berarti $sig > \alpha$, sehingga H₀ diterima. Dengan demikian variabel skor IQ tidak signifikan mempengaruhi nilai belajar.

G. Uji Asumsi Regresi

- 1. $\varepsilon: N(0, \sigma_{\varepsilon}^2)$ atau Residual berdistribusi Normal.
- 2. $\operatorname{var}(\varepsilon_i) = \sigma_{\varepsilon}^2$ untuk semua i, atau Varians Residual homogen.
- 3. $\operatorname{cov}(\varepsilon_i, \varepsilon_i) = 0$, untuk $i \neq j$ atau tidak terjadi autokorelasi
- 4. antar variabel bebas saling independen (tidak saling berpengaruh).

Asumsi-asumsi di atas kadang-kadang tidak dipenuhi, sehingga terjadi pelanggaran asumsi yaitu:

1. Residual tidak berdistribusi Normal.

Pengujian asumsi normalitas residual digunakan uji *normal* probability plot atau kolmogorov-Smirnov. Kurva normal probability plot diperoleh dengan mengaktifkan normal probability plot pada kotak dialog Linear regression : plot.

1271100 127100 1276830 1276830 1276830 1270030 1270030 12076830	2008
Bartalated Result Distagan V Normal protects	ni Pioto

Gambar 8.9 Kotak Dialog Linear Regression : Plot

Gambar 8.10 Output Normal Probability Plot

Apabila Pengujian asumsi normalitas residual digunakan uji normal *probability plot* maka diperoleh seperti gambar 8.10, dimana titik-titik mengikuti pola garis lurus yang mengindikasikan asumsi normalitas residual terpenuhi.

Pengujian asumsi normalitas residual juga dapat menggunakan uji *kolmogorov-Smirnov*, dengan hipotesis:

H₀ : Residual berdistribusi normal

H₁ : Residual tidak berdistribusi normal

Tolak H₀ jika *sig* < α, Dengan menggunakan SPSS, mulai dengan: Analyze → Nonparametric Test → Legacy Dialog → 1-Sample K-S

Gambar 8.11 Kotak dialog One-Sample Kolmogorov-Smirnov Test

One-Sample Kolmogorov-Smirnov Test							
		Unstandardized					
		Residual					
N	10						
Normal Daramators ^{a,b}	Mean	0E-7					
Normal Parameters	Std. Deviation	3.35740740					
Most Extreme Differences	Absolute	.251					
	Positive	.251					
	Negative	161					
Kolmogorov-Smirnov Z	.793						
Asymp. Sig. (2-tailed)	.556						
a. Test distribution is I	Normal.	-					
b. Calculated from dat	a.						

Klik Ok didapatkan:

Gambar 8.12 Output One-Sample Kolmogorov-Smirnov Test

Dari **Output** di atas, didapat nilai Asymp. Sig. (2-tailed) = 0,556, sehingga > α . Jadi terima H₀. Sehingga dapat disimpulkan Residual berdistribusi normal.

2. Heteroskesdastisitas (Varians Residual tidak homogen).

Asumsi regresi linier yang harus dipenuhi adalah homogenitas varians dari *error* (homoskedastisitas; *homoscedasticity*). Homoskedastisitas berarti bahwa varians dari error bersifat konstan (tetap) atau disebut juga identik.

Gambar 8.13 Keadaan Homoskesdastisits

Gambar 8.14 Keadaan heteroskesdastisits

Uji asumsi ini dilakukan dengan menggambar diagram pencar antara ${\cal E}$ dengan y, jika menunjukan pola tertentu maka tidak

homogen, tetapi jika tidak berpola atau acak maka homogen. untuk mendeteksi adanya heteroskedastisitas dapat digunakan metode grafik. Beberapa grafik yang dapat digunakan, antara lain:

1. Diagram pencar antara variabel terikat (Y) dengan masing-

Gambar 8.15 a. Homoskesdastisitas b. Heterskesdastisitas varians makin besar c. Heterskesdastisitas varians makin kecil.

2. Diagram pencar antara e^2 dengan variabel Y

Gambar 8.16 Diagram pencar antara e^2 dengan variabel Y keadaan Heterskesdastisitas

3. Diagram pencar antara e^2 dengan variabel X

Pengolahan Data dengan SPSS | 134

Gambar 8.17 Diagram pencar antara e^2 dengan variabel X, keadaan Heterskesdastisitas

Dengan menggunkan SPSS diagram pencar dapat diperoleh dengan memasukan *SDRESID pada sumbu y dan *ZPRED pada sumbu y pada kotak dialog *Linear regression* : *plot*.

127400 127400 1276800 1076300 140398800 1076030 19076380	State 1 of 1 (h) (h) (h) (
Star Graged Repub Die Bathgram W Honmal probabil	ni Piceo

Gambar 8.18 Kotak Dialog Linear Regression : Plot

Gambar 8.19 Output Scater Plot

3. Terjadi autokorelasi

Asumsi ini berlaku untuk data deret waktu (time series). Uji ini dapat dilakukan dengan uji *Durbin-Watson* (DW), tidak terjadi autokorelasi jika nilai DW dalam interval -2 < DW < 2.

Uji *Durbin-Watson* dapat dilakukan dengan mengaktifkan pada kotak dialog *statistics*,

Gambar 8.20 Kotak Dialog Linear Regression Statistics.

Model Summary ^b								
Model	R	R Square	Adjusted R	Std. Error of the	Durbin-			
			Square	Estimate	Watson			
1	.924 ^ª	.854	.782	4.112	1.366			
a. Predictors: (Constant), Skor IQ, Kedisiplinan, Waktu Belajar								
b. Dependent <i>Variable</i> : Nilai Belajar								

Gambar 8.21 Output Model Summary

Dari output di atas, didapat nilai *Durbin-Watson* sebesar 1,366 dan masih terletak pada interval -2 < DW < 2. Sehingga dapat disimpulkan tidak terjadi <u>Autokorelasi</u>

4. Antar variabel bebas saling independen (tidak saling berpengaruh).

Multikolinearitas (kolinearitas ganda) pertama kali ditemukan oleh Ragnar Frisch yang berarti adanya hubungan linear yang sempurna atau pasti di antara beberapa atau semua variabel bebas dari model regresi ganda. Selanjutnya istilah multikolinearitas diartikan terjadinya korelasi linear yang tinggi diantara variabel-variabel bebas (X_1, X_2, \ldots, X_p) .

Asumsi ini dapat dideteksi dengan :

- a. Nilai korelasi antar variabel bebas tinggi.
- b. Nilai VIF > 10, VIF (Variance Inflation Factor)
- c. R² tinggi tetapai tidak ada variabel bebas yang signifikan.

Dapat dilakukan dengan mengaktifkan *colinearity diagnostics* pada kotak dialog *statistics*.

Gambar 8.22 Kotak Dialog Linear Regression Statistics.

				Coefficients ^a				
Model		Unstandardized		Standardized	t	Sig.	Collinearity	
		Coeffi	cients	Coefficients			Statisti	CS
		В	Std.	Beta			Tolerance	VIF
			Error					
	(Constant)	50.956	50.971		1.000	.356		
	Waktu	2 167	016	564	2 150	012	012	1 006
1	Belajar	5.107	.910	.504	5.455	.015	.913	1.090
T	Kedisiplinan	1.038	.225	.725	4.611	.004	.981	1.020
	Skor IQ	664	.433	248	- 1.533	.176	.929	1.076
	a. Dependent <i>Variable</i> : Nilai Belajar							

Gambar 8.23 Output Coefficients

Dari output di atas didapat nilai VIF untuk setiap variabel sebesar 096, sehingga nilai < 10, dapat disimpulkan tidak terjadi multikolinieritas.

Latihan

Sebuah penelitian untuk mengetahui apakah terdapat hubungan antara prestasi belajar dengan efikasi diri dan regulasi diri dari siswa SMP Negeri di kabupaten Jombang, Jawa Timur. Diperoleh data di bawah ini:

No	Nama	Kelas	Efikasi Diri (X ₁)	Regulasi Diri (X ₂)	Nilai Rapot (Y)
1	AAPS	VII	71	65	78
2	AHB	VII	98	96	88
3	BAP	VII	61	60	74
4	RJS	VII	61	61	79
5	NS	VII	92	87	88
6	ATS	VIII	87	97	86
7	AH	VIII	86	65	85
8	ADP	VIII	86	97	86
9	ER	VIII	82	53	85
10	PDJ	VIII	87	90	86
11	RA	VIII	86	68	85
12	RS	VIII	74	67	85
13	SF	VIII	74	66	85
14	TRA	VIII	88	91	86
15	ТА	VIII	100	96	88
16	WAH	VIII	94	94	86
17	WLM	VIII	91	92	86
18	AR	IX	70	99	85
19	BP	IX	61	58	77
20	DW	IX	68	63	80
21	DNH	IX	88	84	86
22	FS	IX	98	91	89
23	JS	IX	63	58	78
24	MSDA	IX	76	63	80
25	MAFP	IX	93	99	89
26	MRA	IX	67	64	85
27	PF	IX	69	64	83
28	SDA	IX	91	99	89
29	TR	IX	69	61	75
30	YA	IX	66	57	79

Pengolahan Data dengan SPSS $\mid 139$

Tentukan:

a. Koefisien korelasi product moment antara variabel !

b. Model regresi !

c. Uji signifikansi masing-masing variabel terhadap prestasi belajar, secara individu dan serentak!

d. Tentukan kontribusi masing variabel bebas terhadap variabel terikat!

e. Lakukan pengecekan asumsi klasik regresi!

BAB IX

UJI VALIDITAS DAN RELIABILITAS INSTRUMEN

Proses pengumpulan data dalam kegiatan penelitian merupakan suatu kegiatan yang sangat penting. Untuk itu diperlukan instrumen atau skala pengukuran yang mampu mengungakap secara cermat (valid) dan konsisten (reliabel) sehingga informasi yang diperoleh oleh peneliti yang merupakan dasar untuk mengambil kesimpulan dapat dipertanggungjawabkan.

Bab ini akan membahas tentang uji validitas dan reliabilitas instrumen, dengan harapan pembaca dapat:

- 1. Menjelaskan uji validitas instrumen penelitian
- 2. Melakukan uji validitas instrumen penelitian dengan SPSS
- 3. Menjelaskan uji reliabilitas instrumen penelitian
- 4. Melakukan uji reliabilitas instrumen penelitian dengan SPSS

A. Validitas

Validitas adalah suatu ukuran yang menunjukkan tingkattingkat kevalidan atau kesahihan sesuatu instrumen (Arikunto, 2009). Validitas ditentukan oleh ketepatan dan kecermatan hasil pengukuran. Suatu alat ukur yang tinggi validitasnya akan memiliki eror pengukuran yang kecil.

Tipe validitas pada umumnya dikelompokkan menjadi 3 kategori, yaitu validitas isi (*content validity*), validitas konstruk (*construct validity*), dan validitas berdasar kriteria (*criterion-related validity*).

1. Validitas Isi (content validity)

Validitas isi merupakan validitas yang diestimasi lewat pengujian terhadap isi tes dengan analisis rasional. Masalahnya adalah "sejauh mana item-item dalam tes mencakup semua isi objek yang hendak diukur". Estimasi validitas isi tidak melibatkan perhitungan statistik apapun, melainkan hanya menggunakan analisis rasional.

2. Validitas Konstruk (*construct validity*)

Validitas konstruk merupakan validitas yang menunjukkan sejauh mana suatu tes menggambarkan konstrak teoretik yang akan diukur (Allen dan Yen, 1979). Pengujian ini adalah suatu proses yang senantiasa terus berlanjut sejalan dengan perkembangan konsep mengenai konstrak teoretik yang hendak diukur.

3. Validitas Berdasar Kriteria (*criterion-related validity*)

Validitas berdasar kriteria dibagi menjadi 2, yaitu validitas prediktif dan validitas konkuren. Validitas prediktif, misalnya dapat digunakan untuk seleksi siswa baru. Untuk menguji validitas prediktif tes seleksi siswa baru diperlukan kriteria performansi yang akan datang, yang dalam hal ini indeks prestasi setelah calon siswa diterima menjadi siswa dan menempuh pelajaran beberapa semester atau beberapa tahun ke depan. Validitas konkuren merupakan validitas yang sangat penting dalam suatu diagnostik. Koefisien validitas konkuren adalah korelasi antara skor tes dan skor kriteria yang diperoleh dalam waktu yang sama.

Suatu instrumen dapat dikatakan valid jika setiap butir pertanyaan saling memiliki keterkaitan . Valid tidaknya suatu instrumen dapat dihitung dengan menggunakan rumus korelasi product moment yang dikemukakan oleh Pearson, yaitu :

Rumus yang digunakan adalah korelasi *product moment* sebagai berikut.

$$r_{xy} = \frac{N \cdot \sum XY - (\sum X) \cdot (\sum Y)}{\sqrt{\left[N \cdot \sum X^{2} - (\sum X)^{2}\right] \left[N \cdot \sum Y^{2} - (\sum Y)^{2}\right]}}$$

Pengolahan Data dengan SPSS | 142

Dimana:

 r_{xy} = Koefisien korelasi product moment

N = Jumlah subyek

$\sum X$ = Jumla	ah skor	butir soal
------------------	---------	------------

- $\sum Y$ = Jumlah skor total
- $\sum X^2$ = Jumlah kuadrat skor butir soal
- $\sum Y^2$ = Jumlah kuadrat skor total
- $\sum XY$ = Jumlah skor hasil kali butir soal dengan skor total`

Tabel 9.1: Tabel Interpretasi Nilai r_{xy}

Besarnya nilai <i>r</i>	Interpretasi
0,800 < r _{xy} ≤ 1,000	Sangat Tinggi
0,600 < r _{xy} <u><</u> 0,800	Tinggi
0,400 < r _{xy} <u><</u> 0,600	Cukup Tinggi
0,200 < r _{xy} <u><</u> 0,400	Kurang
0,000 < r _{xy} <u><</u> 0,200	Sangat kurang

Sumber : Arikunto (1993)

Kriteria valid yang digunakan dalam setiap penelitian berbeda, tergantung dari maksud dari penelitianya, bisa cukup tingi, tinggi atau sangat tinggi.

<u>Contoh</u>

Tabel di bawah ini merupakan hasil dari uji instrumen kepada 20 siswa terhadap soal mata pelajaran tertentu, apakah instumen valid dan reliabel?

Tabel 9.1 Skor Butir Soal

Na		Butir	- soal		skor total
NO	X1	X ₂	X ₃	X ₄	Y
1	10	15	5	5	35
2	25	20	20	10	75
3	20	10	10	10	50
4	25	15	10	20	70
5	20	15	20	5	60
6	20	20	20	10	70
7	25	15	15	20	75
8	25	15	10	10	60
9	25	15	15	10	65
10	25	10	10	15	60
11	25	25	20	15	85
12	25	20	20	15	80
13	25	25	25	25	100
14	20	10	15	20	65
15	20	25	20	10	75
16	25	25	25	25	100
17	25	20	15	10	70
18	25	20	15	15	75
19	20	20	10	10	60
20	25	20	25	15	85

Keterangan:

X1 : skor soal no 1, X2 : skor soal no 2 dan seterusnya, Y = skor total Langkah-langkah analisis dengan sebagai berikut

Pada variabel View, definisikan:

Variabel 1

Name	:X1
Туре	: Numeric, Decimal: 0, Width: 8,

Label : Skor soal 1, *measure : scale*, adapun variabel lain sesuai *default* program

Variabel 2 Name : X2 Type : Numeric, Decimal: 0, Width: 8, Label : Skor soal 2, measure : scale, adapun variabel lain sesuai default program

Variabel 3 - variabel 4 menyesuaikan.

Variabel 5

Name : Y Type : Numeric, Decimal: O, Width: 8, Label : Skor Total, measure : scale, adapun variabel lain sesuai default program

Masukkan data sesuai kolom yang tersedia, seperti gambar di bawah ini:

<u>File</u> <u>E</u> dit	<u>V</u> iew <u>D</u> ata	Transform	Analyze Dire	ct <u>M</u> arketing	Graphs Utilitie	es Ad
8			~	1	H S	
_	X1	X2	Х3	X4	Y	var
1	10	15	5	6	35	
2	25	20	20	10	75	
3	20	10	10	10	50	
4	25	15	10	20	70	
5	20	15	20	6	60	
6	20	20	20	10	70	
7	25	15	15	20	75	
8	25	15	10	10	60	
9	25	15	15	10	65	
10	25	10	10	15	60	
11	25	25	20	15	85	
12	25	20	20	15	80	
13	25	25	25	25	100	
14	20	25	20	10	75	
15	20	10	15	20	65	
16	25	25	25	25	i 100	
17	25	20	15	10	70	
18	25	20	15	15	i 75	
19	20	20	10	10	60	
20	25	20	25	15	85	

Gambar 9.1 Data Editor

langkah-langkah Uji Validitas dengan SPSS sebagai berikut:

30 18	品品	10	Pagets P Operative Distance P Testar P	変換調
+ 2 2 4	н х л п	10 10 10 10 10 10 10 10 10 10 10 10 10 1	Carpone Meson e General Lance Basel Concernight Lance Basel Macro Machine A	F
5 5 7 8 9 8 1 0 0 u b	*****	2. 利力 2. 2. 2. 1. 4. N.	Brokennik (* 1997) Legitives (* 1997) Legitives (* 1997) General Grand (* 1997) Grand (* 1997) Grand (* 1997) Grand (* 1997) Johnson (* 1997) Spermei (* 1997) Highen Fleatones (* 1997)	6 Porte. 0 Porte. 0 U. 0 0 0 0 0 0 0 0 0 0 0 0 0
TT.	10		Autoria Instalation 1	140
11 17 30	R.W.	10.21	Certificturpes (gaatrooms) Eintorooya	11 10 10 10

1. Klik Analyze \rightarrow Correlate \rightarrow Bivariate

Gambar 9.2 Menu Analyze

2. Masukkan *Variable* X1, X2, X3, X3 dan Y dalam kotak *Variables*, centang Pearson, kemudian klik Ok

Gambar 9.3 Kotak dialog Bivariate Correlations

Pengolahan Data dengan SPSS|146

Correlations							
		X1	X2	Х3	X4	Y	
V1	Pearson Correlation	1	.237	.432	.521*	.683**	
ΧT	Sig. (2-tailed)		.314	.057	.018	.001	
	N	20	20	20	20	20	
VD	Pearson Correlation	.237	1	.682**	.227	.724**	
λZ	Sig. (2-tailed)	.314		.001	.335	.000	
	N	20	20	20	20	20	
VO	Pearson Correlation	.432	.682**	1	.398	.854**	
X3	Sig. (2-tailed)	.057	.001		.082	.000	
	N	20	20	20	20	20	
	Pearson Correlation	.521*	.227	.398	1	.730**	
X4	Sig. (2-tailed)	.018	.335	.082		.000	
	Ν	20	20	20	20	20	
V	Pearson Correlation	.683**	.724**	.854**	.730**	1	
Ŷ	Sig. (2-tailed)	.001	.000	.000	.000		
	N	20	20	20	20	20	
*. Corre	elation is significant a	at the 0.0	5 level (2	-tailed).			
**. Correlation is significant at the 0.01 level (2-tailed).							

Didapatkan *output* sebagai berikut:

Tabel 9.3. Output Correlations

Analisis dari tabel di atas adalah sebagai berikut:

- 1. Korelasi antara item soal no 1 dengan Y sebesar 0,683 sehingga masuk dalam kriteria memiliki validitas tinggi
- 2. Korelasi antara item soal no 2 dengan Y sebesar 0,724 sehingga masuk dalam kriteria memiliki validitas tinggi
- 3. Korelasi antara item soal no 3 dengan Y sebesar 0,854 sehingga masuk dalam kriteria memiliki validitas tinggi
- 4. Korelasi antara item soal no 4 dengan Y sebesar 0,730 sehingga masuk dalam kriteria memiliki validitas tinggi

Jika dalam hal ini peneliti menetapkan kriteria bahwa item soal dikatakan valid jika minimal memiliki derajat validitas cukup, maka keempat item soal di atas dikatakan valid dan dapat digunakan.

Selain itu ada aturan lain yang dapat digunakan untuk mengetahui apakah butir item soal dikatakan valid adalah apabila korelasi antar item soal dengan skor total signifikan, yaitu r hitung \geq r tabel, atau sig < α .

B. Reliabilitas

Realiabilitas menunjuk pada satu pengertian bahwa suatu instrumen memiliki konsistensi/keajegan yang baik. Besarnya nilai reliabilitas menunjukan sejauh mana tingkat keandalan instrument dalam mengukur subyek penelitian.

Rumus yang digunakan dalam penelitian ini adalah rumus Alpha :

$$r_{11} = \left(\frac{k}{k-1}\right) \left(1 - \frac{\sum \sigma_b^2}{\sigma_t^2}\right)$$

Dimana:

 r_{11} = reliabilitas instrumen k = banyaknya butir pertanyaan atau banyak soal $\sum \sigma_b^2$ = jumlah varians butir σ_t^2 = varians total

Besarnya nilai <i>r</i>	Interpretasi
0,800 < r ₁₁ ≤ 1,000	Sangat Tinggi
0,600 < r ₁₁ <u><</u> 0,800	Tinggi
0,400 < r ₁₁ <u><</u> 0,600	Cukup Tinggi
0,200 < r ₁₁ <u><</u> 0,400	Kurang
0,000 < r ₁₁ <u><</u> 0,200	Sangat Kurang

Sumber : Arikunto (1993)

Langkah-langkah:

Klik : Analyze \rightarrow Scale \rightarrow Reliability Analysis

Pengolahan Data dengan SPSS $\mid 148$

Antos Develigendas gest	a United Adogra Vittoria diate
Regards 1	約10 10 4 10 10
Oprotative Statistics 4	
tigic)	
Downless 7	(
penaltiportest +	- 26
Ceratal proj Anal Models, F	- 74
Margara Marana P	
Dente 3	- (7
Bepenale +	- M
Lypinia 3	1
Teore Haterio >	.0
Classic 1	
Genansion Reforms 1	
tige +	C2 Boutes wages
Incomposition 1	The Deptermention al Location of Property Cold. 1
Féncaipus I	(1) Make-services Avenue PRIMEA.)
5444 1	The state of the s
Highpie-Ramporpa ()	a second
II Hone Weinight	110
Hallphroutdon 4	n
Competitional I	6
Quality Contract 1	(66)
EROC Caps.	- 64

Gambar 9.4 Menu Analyze: Scale

Masukkan *Variable* X1, X2, X3, X3 ke dalam items, ubah model dalam format Alpha.

₫ Y	Items:	Statistics
Model: Alpha * Scale label: OK	Paste Reset Cancel Help	

Gambar 9.5 Kotak Dialog Reliability Analiysis

Klik Statistics, centang item. Klik continue dan Ok.

Descriptives tor	10301-8803
i✔ Dem	🖄 Correlatione
III Scale	Covariances
Eggie if item deleted	
Commarka	- : 440% Table
El Means	@ None
📳 Yariances	O E test
E Cgranances	O Friedman chi-sg
Cogelations	O Codynan chi+say
🖄 Holetinga T-square	Tugay's test of ad
Intraclass correlation confident	
weglet. Treastagement	THE CONSTITUTION
Quidants whereat [05.] %	Teltinge
francessia frances	CERTIFICATION (11020)

Gambar 9.6 Kotak Reliability Analiysis: Statistics

Didapatkan	output	sebagai	berikut:
------------	--------	---------	----------

Reliability Statistics							
Cronbach's	N of Items						
Alpha							
.733	4						

Dari **output** di atas dapat dikatakan bahwa soal tersebut memiliki derajat reliabilitas yang tinggi. Jika dalam hal ini peneliti menetapkan kriteria bahwa soal dikatakan valid jika minimal memiliki derajat reliabilitas cukup, maka keempat soal di atas dikatakan *reliable* dan dapat digunakan, Selain itu ada ketentuan dikatakan *reliable* apabila nilai Cronbach's Alpha > 0,6.

DAFTAR PUSTAKA

Allen, M.J. dan Yen, W.M., 1979. Introduction to Measurement Theory, Monterey : Broooks/Cole Publishing Company.
Arikunto, S. 1993. Pendekatan penelitian; Suatu Pendekatan Praktik. Jakarta : Rineka Cipta
Agung, W. 2010. Panduan SPSS 17. Jogjakarta: Garailmu
Montgomery, D.C., 2001, Design and Analysis of Experiment, 5th ed.,John Wiley
Nazir, Mohammad.1988. Metode Penelitian. Ghalia Indonesia: Jakarta
Netra, IB 1977. Statistika Inferensial. Surabaya: Usaha Nasional.
Sugiyono. 2004. Statistik Nonparametris: Alfabeta. Bandung
Sudjana. Metoda Statistika. .Rosda Karya
Rozak, A. 2012. Pengantar Statistika. Malang : Intrans Gramedia

Lampiran 1

Tabel nilai Chi Square

-	Pr	0.26	0.10	0.06	0.010	0.006	0.001
	1	\$.32330	2.70554	3.84146	6.63490	7.87944	10.82757
	2	2.77259	4.60517	5.99146	9.21034	10.59663	13.81551
	3	4:10934	6.25139	7.81473	11.34487	12.83816	16.26624
	4	5.38527	7.77944	9:48773	13.27670	14.86026	18.46683
	8	6.62568	9.23636	11.07050	15.08627	16.74960	20.51501
		7:84080	10.64464	12.59159	16.81189	18.54758	22.45774
	7	9.03715	12:01704	14.06714	18,47531	20 27774	24.32189
	8	10.21885	13.36157	15.50731	20.09024	21.95495	26:12448
		11.38875	14 68366	16.91898	21,66599	23 58935	27,87716
1	10	12.54886	15.98718	18.30704	23.20925	25,18818	29.58830
	11	13.70069	17.27501	19.67514	24.72497	26.75685	31,26413
	12	14.84540	18.54935	21.02607	26.21597	28.29952	32,90949
1	12	16.98391	19.81193	22.36203	27.68825	29.81947	34 52818
1	14	17.11693	21.06414	23.68479	29.14124	31.31935	36,12327
1	16	18.24509	22.30713	24.99579	30.57791	32.80132	37.69730
1	16	19.36886	23,54183	26.29623	31.99993	34.26719	39.25235
	17	20.48868	24.76904	27.58711	33,40866	35.71847	40.79022
	18	21.60489	25.98942	28.86930	34.80531	37.15645	42.31240
1	18	22.71781	27.20357	30.14353	36.19087	38.58226	43.82020
1	20	23.82769	28.41198	31.41043	37.56623	39.99685	45.31475
	21	24.93478	29.61509	32.67057	38,93217	41,40106	46,79704
	22	26.03927	30.81328	33 92444	40.28936	42.79565	48.26794
1	23	27.14134	32.00690	35.17246	41.63840	44.18128	49.72823
	24	28.24115	33.19624	36.41503	42.97982	45 55851	51.17860
	26	29.33885	34.38159	37.65248	44.31410	46 92789	52.61966
	28	30.43457	35,56317	38.88514	45.64168	48.28988	54.05196
	27	31.52841	36.74122	40.11327	46.96294	49,64492	55.47602
	28	32,62049	37.91592	41.33714	48.27824	50.99338	56.89229
	29	33.71091	39.08747	42.55697	49.58788	52 33562	58.30117
	30	34.79974	40 25602	43,77297	50.89218	53.67196	59.70306
	31	35.88708	41,42174	44.985.34	52,19139	55.00270	61.09831
	32	36.97298	42.58475	46.19426	53,48577	56.32811	62.48722
	33	38.05753	43.74518	47.39988	54.77554	57.54845	63.87010
	34	39,34078	44 90316	48.60237	56.06091	58.96393	65.24722
	30	40.22279	46.05679	49.80185	57.34207	60.27477	66.61883
		41.30362	48.21212	50.55646	55,61921	61.56116	67.36517
		42,30331	40.00041	52.152.52	55.05250	62.00334	07.34045
		43.46191	49.51255	53.38354	61.16203	64.10141	70.70289
1	40	44.33346	51 90505	55 75545	62,62012	65.75595	73.40196
		35 59-55	51.00050	22 04730	EX 95007	CD 000773	7474494
		40.03100	54 09000	58 17474	66,00604	69 33600	76 09376
1	43	49 9400*	55 23010	59 30351	67 45935	70 61590	77 41959
	4	49.91290	56.36854	60 48089	68 70951	71.89255	78 74957
1	45	50 98495	57 50530	61 65673	69 95593	73 16606	80.07673
1	4.0	52 05619	58 64054	67 87967	71 20140	74 43554	81 40033
1	47	53 12666	59 774 29	54 001111	72 44334	75 70407	82 72042
1	48	54,19636	60 90661	65,17077	73,68264	76.96877	84.03713
	49	55 26534	62 03754	66.33866	74,91947	78,23071	85 35055
	60	56,33360	63,16712	67.50481	76,15389	79,48998	86,66082

http://junaidichaniago.com/

Lampiran 2 Tabel nilai F

1.																		
	-	1				-							386	-			100	-
高級	10		Total a	100 March	Sec.	- Billion	Same	See.	- Ales	Sine .	and a	in the second	劇		and a		a state	No.
1000	35	328	100		and a	and a	Press Press	1		1000	- All	and the	it to	true.	調整	1110	true	Turke
嘉	30	16232	Name:		No. of Lot, No. of Lot, No.	See of		i i i i i i i i i i i i i i i i i i i	Titac	1000	1433	日常		in the second se	- Hereit	상태	and a	「お
	43	花橋	10,000	10000	-	波道	888	1993		花湯湯	日本	語ない	福橋	the set	1111	12.02	1000	10
品語語		1000	0223	NOT BE	1000	通知	語業	22550		신장	の目前	合理	199	100	섊	日日日日日日日日日日日日日日日日日日日日日日日日日日日日日日日日日日日日日日	0000	12.55
	÷1	1985	South L	22520	1440	になって	1000 V	tagen.	1000	1000	1944	L'ANT	- March	LORY	atter.	設備の	B REAT	10010
嘉温	-	1995	同語	and and	12	構成の		12.22	20,000	10.11	11	非常	1	and the	情語	山神	anim.	1
嘉温	- 363	1000	1000	ASC 42	1122	は語語	出行	(distant	1111	設行	通知	「北谷	the state	合語	finet.	協問		
記念	35	お香	1000	は現代	1000	北部	田湯	inter:	Attra	Set of		相合	No. 10	(table)	din tu	1000	Roan I	1000
「なる		Can be	and the	12,816	話れ	Trible	- Hander	100 m	- ANG	100			語り	104	12.00	12	120	
日間に	"	の語言	22250	SAVE	2005	Part of	1000	Dist.	2000	Strat.	stat.	1993	11210	No.	a case o	Calific Color	sale :	110
荔		北田	調査	2000	No.	指書	「枝神	1000	-	11	In the second	1 mart	A March	1	in the second	四十		- 10
品語	•	2000	2012	Solito L	Steel.	2525	語語	and a	and the second	請	No.	語情		Sinte Sinte	1	清打	「「「	200
「「「	40	100	1000	COURT	Same	北部	現代	1	100	1000	書	1	april 1	and a	and a	200	1	- Party
品稿	•	10575	25522	2.92	No. W.	and a	- Contraction	and a	action of	and a	and a		1	AND NO.	1000	No. of	and and	1000
1000	1	25 99 99 99 99 99	19925	1000	1000		1444	1 Miles	1028	and the second	市場の	1.00		1000	1.000	ation .	1000	1000
品語		出設	Condition of the	actives.	読む	通報	お推	12mg	and a	ないな	the second	1995	(pass)	1000	N. W.L.	-	and an	

http://junaidichaniago.com/

Lampiran 3

Tabel nilai korelasi product moment

0.2250	- 10	Cial Month	ALC: NOT	A COLORED	100	Sec. 1	ringhet significanted on taking serve and					
át = (25:2)	0.00	0.0051	0.01	1.00	840 [0946] 8461 [0966 [096							
지만가지?	214	gran segues	HEAD FOR THE	A LAD OVAL	t afte	1. State 1	10	ghat high-f	BARD LINE	it siji tion s	100	
		9.08	-MG	608	R.M.L	241000121	1000	2.1.10	1.042	6.03	184	
	0.007	9.0049	1.0021	1000	LODG	- 38	1,2211	0.2756	1.000	10.5100	1.14	
- 21	0.000	0.8500	1,890/	16400	Ermon.		 Ki049 	0.2682	8.2658	183417	-14	
- 2	0.0054	-9.8.38	1.5141	1632	1991.1	42	0.210	0.3884	0.5120	1346	1.14	
	-2.541	9,3314	1.0.21	1910		- W	0.0031	0.2672	8,2002	9245	18.0	
	0.0074	0.7848	1.1121	11041	8.0.108	- <u>B</u>	-b.7304	0.2684	6.3074	6.284		
	0.0011	0.1047	1.5117	12042	610918		9.3101	10.2588	6 host	- #3H2	1.164	
.2	-0.4833	2.665	12101	10.1012	CUURES .	42	4246	0.384	6.1400.3	8.7428	1.4	
3.	0,9484	0.6312	1.7191	3.7648	10,015		1.81544.1	- 101542	8.9997.	10,7201	1184	
	6304	0.0001	1 6251	117948-	6,6476-		0.036	0.901	6.2975	33/14	. 14	
. 30.	0.4613	0.5760	1.4141	8.7029	1.6312	30	· * 100	-0.585	B 2542	114541		
11	\$4.82	0.5529	1.03381	1.683	0.0016		1.7941	- A 1600	6.975	1.000		
32	0.4150	0.1004	8.4326	1.6614	6.7894.	2	1.000	10,1611	0.10011			
D .	0.4418	0.5540.5	10.9937	1.601	8.5404		- N. M. C.	10,000	C7110		1.1	
1.4	0.4059	0.4922	0.3541	3,6036	8.741#		1.000	100000	A 1678	8,300	-	
36	9,4(24.)	0.4821	1.3371	1.8015	0.7247			0.1644	A. 1814	0.000		
10	2.4000	-0.+das	E M21	1,2097	0.708.4		2.041	0.2404	B 48.07 /	1.1.1.1.1		
10	-D SET	0.4555	A 1787	1.2716	60931		2.211	0.2011	0.000	1000	-	
10	D. STEL	0.4410	T. STET	10.0424	1.4753		2.847	0.289	8.279	8.2941		
10	5.9487	0.4418	0.0011	1.4417	6.0417		5.902	0.313	0.079	12090		
10	- maine		8.4671	1.1.145	I AUTO		2.88	0.24114	0,2758	1.64		
16	C WILL	0.4345	1.48.54	0.4716	1.600		2, 1941.	- ocene	6,0237	3.3617	- 4.	
	0.0410	0.4754	1.4125	12020	10001	<u>a</u>	5.830	0.2001	0.2310	8.3607	11	
- 55.	2,21,47	10. TO 10.	- AA11	1 10.17	R GUTT		1,20	0.211	1.22.0	1,247		
- 12				0.0000	1.077.4	- 31	0.014	0.201	1201	1,2017		
14		0.1800		0.000.00	0.000	- 34	1.81.	9,2231	1,2691.	1.1294		
	a burn	CL PROV		0.0000	1. Starter	- 3	3,20	0.200	6,247	1.201		
25	0.3172	0 5159	1400	1411	6,5854		- ILM15.	1020	5,201	1,288	- 3	
10	93112	AL MELS	1.697	14305	8.5.99	- 71	1,924	2.771	Sati.	1,2,0,1		
50.	12201	1.0.201	1.624	1405	1,2702	20	3,1812	0.3.94	0.2167	8.2004	- 84	
- 29	0,3000	9.5559.1	1.93	14554	8.2628		31,2011	0.0283	6.2882	1301	11	
	0,2040.1	0.3-els	1.4063	3,4457	6,5543		5.825	- 0.212	62147	1346	- ID	
H.	6.2013	.0.3490	8.4633	3.601	6.5465	44	5,000	0.2118	6,2100	1204	1.6.3	
	6-2250	0.3388	1.0401	14017	8-5360.1	· · · · · · · · · · · · · · · · · · ·	S april	0.23-62	0.2(00)	12/80	1.1	
- 10	2426	-9.1448	1.62	1498	8.5312	- E	2.008	0.010	0,0100	83,300	11	
- 44	2,2,22	3.6295.	1.8842	1.530	8.5214		3.1724	·0.132	0 280R -	82142	1.	
20	6,2748	0.1240	1.2830	8.4682	8.9388		3.7776	-0.318	0.000	12'01	1.8	
	3,2108	0.4200	0.1790	18.4038	0.01234		2 (144)	0.0084	0.2077	0.292	1.10	
42	0.3470	0.1540	1.012	3.4018	0.0081#	87	- 1 (TH)	0.0064	E 5485	12717	713	
.04	0.3440	13,3,530	15.34#1	1.483#	8.4501	.55	0.0145	0.000	1,040	33300	1	
38	0.2603	0.5081	9.3621	1.5678	8,4858	30	8,1794	00000	0.0456	1347	· 11	
-49	6.2373	0.9044	1.03	0.3682	14294	- 20	0.7156	0.00%	8,2450	1.1.5018	- 8.	
-11	0.3543	0.3806	1.3356	1.3617	8.4843		0.1714	10.096	0.5000	1,1940	1	
	6205	0.3972	1,3496	13642	8.4393		A 19/2	0.008	8.546e	10041	1.1	
- 40	6.3483	0.9848	1,3167	4.3664	8 4 14 3		10.000	0.997	6.115	10001	1.01	
	0.9466	0.565	1.4430	11221	E-etilia -		-5.1655	0.000	6.517	2,302	100	
10	101430	20.1818	1.3384	8.4714	8.0447		5.450	0.1884	0.5110	3,2404	100	
1.00	0.2401	0.5845	W Yheel	123465	8,4400	- 31	5 4171	0.1084	1210	12.91		
- 20	63157	0.1414	0.3154	3 Mar 1	East12		11 1041	0.2274	B-CERT	8 1/10	1.00	
	0.5002	0.3255	1.3367	1100	8.451.6	100	5 1441	0.000	6.3634	1.7.164	-	
	0.1156	A 124	1.754	11675	Lat.		1 14/1	- A 1507	K MARK	5 710		
				= 40.02								

http://guru-math-offline.blogspot.com

Lampiran 4

Tabel t

		2000					
Pr	0.25	0.10	0.35	1,025	9.03	0.005	0.601
at	0.50	0.20	0,10	1.050	50,0	0.010	0.002
(t	1.00000	3.07756	0.31375	12 70520	31.62032	63 (5674	318.30804
2	0.81650	1.88562	2.95990	4.30285	6.96456	9.52484	32.32512
3	E 76489	1.63774	2.35338	3:18245	4.54070	5.64091	10.21453
	8.74070	1.63324	3.12115	2.77645	3.74095	4.65400	7.17346
5	8,72668	1.47588	2.01505	2,51058	3.36433	4.03214	5,89343
6	0.71756	1.43976	1.94318	2,44091	3.14207	3.70743	5.20163
10 A	8.71118	1.01.092	1,89,458	2,16,62	2.89795	3 69648	4 78529
8	8 79039	: 39582	1.89965	2.30000	2,89645	3.35539	4.50079
9	8.70272	1.39303	1.83311	2 20296	2.82144	3 24984	4:29681
10	6.630011	1.37218	1.81245	2.22814	2.76977	8.16027	4.14570
ガー	8.09740	1,90345	1.79588	2.20099	2.71808	3.10581	4.82470
12	1.00548	1,35622	1.78220	2 17801	2.68100	3.05454	3.92963
33	1.68383	1.35017	1 77093	2 16037	2 65031	3.01228	3.85198
34	0.09342	1.39503	1.70.924	214470	2.62440	2,97664	3.76739
35	8.69120	1.34061	1.75385	2.13345	2.60248	.2.94671	3,73283
25	1,69913	1.33576	1 74588	2.11991	2,86349	2.92078	3.58618
47	5-59500	1.53336	1.72581	2.10902	2.56693	2 09021	3.\$4877
38	1.68836	± 330991	1.73416	2:10092	2,55238	2.67544	3.61048
19	0.68762	1.32778	1.72913	20880.5	2,63948	2,86093	3,57940
20	4,68685	1.32534	1.72422	2,08596	2.62796	2,84634	3.55105
21	8.69615	1.32319	1.72074	2,07901	2,61785	2.63136	3.52716
22	1.68581	1.32124	1.71714	2.07397	2.50832	2.81876	3.50499
25	1,68521	1.31948	1.71387	2.06866	2,49087	2.80734	3,48406
24	235485	1.31734	1.73068	218390	2.49216	2.10694	3.46878
35	0.68443	1.31635	1.79814	215954	2.48511	2.78744	3.45619
26	5 61424	1.31457	1.70582	205557	7.47953	2 17971	1.42500
27	8.68368	1.31370	1.70329	2.05153	2 47265	2.17008	3.42103
28	8.68335	1.31253	1.70113	2 (04841	2.45714	2.16328	3,40816
29	1.63364	131143	1.69913	2,04523	2.46202	2,75639	3.39624
20	8.08270	1.31042	1.09720	2.04227	2.45726	2,75000	3.36518
38	1,68248	1.30945	1.69552	2.03951	2.45282	2.76404	3.37490
32	1.68213	1.30857	1.69389	2 69893	2.44868	2 73848	3.36631
33	6.68200	1.30774	1.89236	2.03452	2.44478	2,73328	3.35634
34	1.08177	1.30595	1.69092	2.03224	2.44155	2.72839	3.34193
15	8.68156	1.30521	1.88957	2.03021	2.43772	2.72381	3.34005
36	8.69127	1.30554	00000.1	2.02900	2,43449	2.71946	3.33263
37	2,68118	1.30465	1.65729	2 (2850	2,43345	2 11041	5.52563
36	1 68 100	1.30423	1.68535	2.02439	2.42857	2.71155	3.31903
19	2.63062	E 30364	1.51439	2 02359	2.42594	2 70791	3.31279
40	3.08087	1.30300	1.00365	2.02308	2.42326	2.70445	3.30666

http://junaidichaniago.wordpress.com

TENTANG PENULIS

Dr. Abd. Rozak, S.Pd., M.Si., Lahir di Jombang tahun 1982, pendidikan formal RA-MI Bustanul Ulum Brudu Sumobito (1988-1994),MTs Mambaul Ulum Corogo Jogoroto (1994-1997),SMAN Kesamben (1997-2000) dan Sarjana Pendidikan (S.Pd) dari STKIP PGRI Jombang. Pada tahun 2006 diangkat sebagai tenaga pengajar di kampus yang sama, dan S2 Jurusan Statistika Institut Teknologi

Sepuluh Nopember Surabaya dan Lulus Tahun 2011, dan Tahun 2013 menempuh gelar Doktor Pendidikan Matematika di Universitas Negeri Malang dan lulus tahun 2018.

Dr. Wiwin Sri Hidayati, M.Pd., penulis buku ini, Sarjana Pendidikan Matematika tahun 1996 dari STKIP PGRI Jombang. Sejak tahun 1998 dan Tahun 2002 diangkat sebagai dosen tetap yayasan, dan tahun 2005 diangkat sebagai dosen Kopertis Wilayah VII Surabaya DPK pada STKIP PGRI Jombang. Pada tahun 2007 lulus Program Pasca-

Sarjana S2 Pendidikan Matematika Universitas Negeri Surabaya, dan pada tahun 2013 lulus program Doktor Pendidikan Matematika Universitas Negeri Surabaya.